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H I G H L I G H T S

• A new data-driven method is proposed which is superior to the expert-driven method.
• Data-driven method integrates data acquisition and model construction in real-time.
• The data-driven method is more effective in 70 % of the comparisons.
• A 14.7 % reduction in required data size can be achieved.
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A B S T R A C T

The interdisciplinary field between solar desalination and machine learning is the subject of a cutting-edge study.
Generally, the studies treat data acquisition and model construction as independent processes, leading to
problems such as insufficient dataset size or resource wastage. This study proposes a data-driven method that
integrates data acquisition with model construction processes. By using the Bayesian optimization algorithm, the
method accelerates the convergence of model accuracy. By comparing the results of 100 pairs of simulations, it is
found that the models using the data-driven method are more accurate than traditional expert-driven methods in
70 % of compared results. Additionally, when it makes a model with the mean absolute percentage error as 5 %,
the proposed data-driven method requires 220 additional data on average, compared to 258 with the traditional
expert-driven method, representing a 14.7 % reduction. This work offers new ways and a broad application of the
interdiscipline between solar desalination and machine learning.

1. Introduction

Freshwater scarcity remains one of the pressing global challenges
today, with approximately 2 billion people worldwide lacking access to
safely managed drinking water services [1]. In contrast to freshwater
resources, seawater resources on Earth are abundant. Therefore, desa-
lination of seawater can be employed to address freshwater shortages in
coastal cities [2]. Solar stills are commonly used solar-powered desali-
nation devices known for their compact structure, small footprint, and
ease of operation and maintenance [3]. Moreover, compared to other
commercially scaled desalination technologies, solar stills are consid-
ered more environmentally friendly [4], thus garnering broader atten-
tion from researchers.

In recent years, researchers have explored various methods to

enhance the productivity of solar stills, including the addition of nano-
particles [5], phase change materials [6], structural optimization [7],
and external auxiliary devices [8]. Although the productivity of solar
stills has been improved, constructing an accurate prediction model for
solar still production remains a major challenge. Many researchers have
obtained different models of solar stills through thermodynamic calcu-
lations. Peng et al. [9], grounded in thermodynamics, assumed the most
ideal model for heat and mass transfer in the solar stills, and proceeded
to calculate the theoretical upper limit of the solar still’s performance. A.
Mohamed et al. [10] conducted theoretical research on the performance
of a newly designed rhombic solar still, considering radiation exchange
between the surfaces of the still, and proposed a novel theoretical model
for solar stills. However, like others, this model has certain limitations
and limited application scenarios.
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On the other hand, machine learning (ML) methods offer a new
avenue for predicting and optimizing solar stills. Various ML methods,
which have been widely studied in other fields, could be used in the solar
still field, such as Generative Artificial Intelligence (GAI) [11] and meta-
learning [12]. Wang et al. [13] used a random forest model to predict
the output of tubular solar stills, and calculated the optimal hyper-
parameters through Bayesian optimization. They achieved an R-squire
(R2) value of 0.976 for the test set fit. Gao et al. [14] proposed a model
for predicting solar still output using conventional weather data and
applied the model to four other cities, achieving a correlation coefficient
of 0.868 between output and irradiance, demonstrating the reliability of
the prediction model. Ammar et al. [15] used long short-term memory
neural networks (LSTM) to predict the output of stepped solar stills,
achieving an R2 value of 0.99 for the test set fit. Santos et al. [16] studied
the use of artificial neural networks (ANN) to predict solar still output
and explored the impact of different variable combinations on predic-
tion results.

Furthermore, in the application of ML methods to the solar still field,
it is essential to understand the relationship between model accuracy
and dataset characteristics, for example, data quality [17,18] and
dataset size [19,20]. Larger datasets do not invariably equate to superior
performance [21]. Especially in the field of solar stills, Peng et al. [22]
through extensive experimentation and modeling research, found that
too small datasets greatly reduce the generalization ability of machine
learning prediction models. Conversely, when the dataset reaches a
certain size, the accuracy of the prediction model does not necessarily
increase with the increase in data volume. This means that there is a
delicate relationship between dataset size and model accuracy.

However, previous studies (expert-driven method) typically
involved the establishment of a dataset through experimental data to
train machine learning models, with data acquisition and model con-
struction treated as independent processes. These approaches often
overlooked the relationship between dataset size and model accuracy
during the data acquisition process. Moreover, as Fig. 1 shows, dataset
sizes were often determined based on researchers’ experience. Typically,
researchers would adjust parameters intermittently to generate different
datasets over several days of experimentation, halting data collection
once they deemed it sufficient. This practice introduces significant un-
certainty into the data acquisition process and can result in either
insufficient or excessive datasets. Thus, it is imperative to devise a
method that bridges the gap between the data acquisition and model
construction processes of the solar still field. Active learning [23], and
reinforcement learning [24] could be the possible ways, which have
been widely used in other fields, such as the advanced materials field for
optimizing data acquisition procedures.

The primary objective of this study is to leverage machine learning
optimization algorithms to establish a connection between the data
acquisition and model construction processes (data-driven method). By
utilizing existing data, the optimization algorithm generates a set of
recommended experimental parameters to guide subsequent experi-
ments. All parameters are determined exclusively through machine
learning algorithms. Furthermore, the algorithm continuously monitors
model accuracy in real-time, providing researchers with guidance on
when to terminate experiments. This approach ensures that the dataset
size is sufficiently large to achieve optimal accuracy while avoiding the
wastage of experimental data.

In this work, a substantial experimental dataset is first collected.
Using this dataset, a highly accurate machine learning prediction model
is trained, tested, and compared with experimental values. Subse-
quently, this high-accuracy model is employed to validate the proposed
data-driven method. Finally, the effectiveness of the data-driven data
acquisition method is compared with the expert-driven method.

2. The experiment and methods

2.1. Experiment system

A solar still experimental setup was constructed to acquire data
(Fig. 2). This system primarily consists of three components: the solar
still system, the control system, and the measurement system.

In the solar still system, three types of solar stills were utilized for
experimentation and research: single-slope, double-slope, and pyramid.
Each solar still is covered with an insulated layer using 4 cm XPS
(extruded polystyrene) foam. The water tank has dimensions of 25 cm ×

25 cm, with an electrical heating panel attached to the bottom to
simulate solar heating. Within the inner chamber, a fan enhances air
circulation. A thermostat cover placed above the glass cover simulates
ambient temperature, with a distance of about 1 cm between the glass
cover and the thermostat cover. The inside surface of the glass cover is
treated with an anti-fog coating, rendering it ultra-hydrophilic. Addi-
tionally, a fibrous water channel and a water‑leading wire are incor-
porated to guide the condensed freshwater stream from the glass cover
to the collection bottle. These optimized designs have been proven to
significantly reduce production fluctuations and experiment time [22].

In the control system, the fan and electrical heating panel are
controlled by different DC power sources to adjust input power. The
thermostat cover temperature is controlled by a thermostat water bath
to simulate various ambient temperatures. This setup enables the
convenient achievement of different working conditions.

In the measurement system, it encompasses all measuring devices,

Fig. 1. The difference between traditional expert-driven and novel data-driven methods (Figure source refers to Table S1 in the Supplementary Information).
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such as the data acquisition unit, electronic balance, and thermal couple.
The specific temperature measurement locations are shown in Fig. 2(b).
All devices and sensors used in the experiment are listed in Table S2 in
the Supplementary Information. Based on the experimental setup, four
input parameters and one productivity value were collected, including
water temperature, fan voltage, ambient temperature, solar still types,
and freshwater productivity. These input parameters have been shown
to significantly influence productivity [22]. Therefore, a large dataset
comprising 813 experimental data was established. The pair plot and
correlation heatmap of the collected data can be found in Fig. S1 and S2
in the Supplementary Information.

2.2. Machine learning assistance model

To rapidly and accurately establish a machine learning prediction
model, a data-driven data acquisition method using machine learning is

proposed (Fig. 3).
Initially, data are randomly acquired through experimentation to

create the initial dataset. To achieve optimal effectiveness, the initial
data should be as diverse as possible. For example, this study constructs
an initial dataset with 20 data, with productivity ranging from 0.1 kg/
(m2⋅h) to 1.1 kg/(m2⋅h).

Using this initial dataset, an initial prediction model is established.
The backpropagation neural network (BPNN) is a common machine
learning regression algorithm widely used in property prediction and
engineering [25,26], particularly in solar still machine learning pre-
diction models [27]. Therefore, this study selects the BPNN model to
construct the prediction model. With four input parameters, to prevent
overfitting and minimize model complexity, two hidden layers are
considered sufficient to adequately fit the dataset in this study.

In the forward pass process, the output value can be computed
sequentially from the left side to the right side. For simplicity, bias terms

Fig. 2. The experimental setup (a) Photo (b) Schematic diagram.

Fig. 3. The flowchart of the data-drive method based on machine learning. In this work, the applied requirement is the R-squire of the prediction model. The
optimization model is Bayesian optimization, and the threshold is defined as the R-squire. (the detailed objective function can refer to Note S3 in the Supplementary
Information).
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are omitted. Each unit value can be represented as

zj =
∑

wijxi (1)

yj = f
(
zj
)

(2)

Where i, j are respectively the labels of the current and next layer, zj is
the input value of the unit in the next layer, wij is the weight between
two units, xi is the value of the unit in the current layer, yi is the value of
the unit in the next layer. f(.) is the activation function.

In the backward pass process, the weights between two units can be
adjusted, with the computation proceeding from the right side to the left
side. Each updated weight can be represented as

wʹ = w+Δw = w −
∂E
∂w (3)

Where ∂E
∂w is error derivatives. In the output layer, the cost function E can

be chosen

E = 0.5(ο − t)2 (4)

Where o is the output value of the BPNN model, t is the true value. The
error E in the other layers can be represented

∂Ei
∂zi

=
∂Ei
∂yi

∂yi
∂zi

(5)

∂Ei
∂yi

=
∑

wij
∂Ej
∂zj

(6)

Δw can be represented

Δwij = − yi
∂Ej
∂zj

(7)

Next, the evaluation of the prediction model should be compared
against the applied requirements, typically represented by a threshold
value. If focusing on absolute error, this threshold can be the mean
absolute error; if relative error is significant, the mean absolute per-
centage error may be used. In this study, the R-squared value is set as the
threshold value, considering the overall quality and universality of the
prediction model. However, due to the limited amount of initial data,
the initial prediction model typically lacks high accuracy and seldom
meets this threshold value.

In the subsequent step, an optimization algorithm is employed based
on the obtained prediction model to assist in selecting the next experi-
mental parameters. This step represents a self-corrective process, uti-
lizing the existing prediction model and an optimization algorithm to
provide potential next experimental parameters aimed at improving
model accuracy. This process forms a virtuous cycle between the pre-
diction model and improvement effectiveness. As the accuracy of the
prediction model increases, so does the improvement in effectiveness,
leading to a more accurate prediction model. Conversely, when the
dataset is too small, the improvement effectiveness may be weak.
However, even a slight increase in data canmodify the predictionmodel,
enhancing the effectiveness of the improvement process.

Bayesian optimization (BO) is regarded as one of the most
outstanding optimization algorithms. Ghahramani, the former chief
scientist at Uber, considers Bayesian optimization as one of the cutting-
edge technologies in probabilistic machine learning [28]. Therefore, this
study utilizes the BO algorithm as an example to validate the proposed
method of machine learning assistance. The core concept of Bayesian
optimization is to construct a model that can be iteratively updated and
queried to guide optimization decisions [29]. The detailed optimization
process is illustrated in Fig. 3. In the phase of selecting the next exper-
imental parameters using machine learning, the objective function
needs to be initially formulated. It can be represented as

Index = Fun(Ps*,Ds) (8)

Where Index is the evaluating index of the prediction model, and it is R-
square (R2) in this instance. Fun(.) is the objective function. Ds is the
data set, which is updated in the former part but is invariable in this
optimization part to provide a data-driven experience. Ps* is target
parameter set including Tw*,Tamb*,Uf *,Type* which are new parameters
in the next experiment. This function indicates that when new param-
eters Ps* are selected as the experimental parameters, a probable R-
square is generated. This R-square is computed by training the dataset
with the addition of new data Ps* and its corresponding production. The
production under the Ps* condition can be acquired using the internal
prediction model within the objective function. For detailed construc-
tion, please refer to Note S3 in the Supplementary Information.

Based on the objective function and the range of Ps, a few initial data
points can be randomly generated. Then, the probabilistic surrogate
model, a key component in BO, can be fitted. In this section, Gaussian
process regression serves as the probabilistic surrogate model, with the
Matern 2.5 kernel function utilized. This can be represented as follows:

R2 = GP
(
Tw,Tamb,Uf ,Type

)
(9)

The acquisition function is employed to select the optimum Ps using
the probabilistic surrogate model. The confidence boundary strategy,
widely applied in the field of K-arm gambling machines [30], has been
selected for the acquisition function in this study, specifically the Upper
Confidence Bound (UCB) function, represented as:

αt(Ps*;Ps1:t) = μ(Ps1:t)+
̅̅̅̅̅̅̅
β1:t

√
σ(Ps1:t) (10)

Where μ is expectation; σ is variance; β is a constant value to balance
expectation and variance, and

̅̅̅
β

√
is 2.576 quoted the setting of Python

package “bayes_opt” [31]; t is the number of data in Ds.
When new Ps* and R2* are selected by acquisition function, R2*

should be compared with the set threshold. If it meets the threshold,
output this Ps* as the next experiment parameters. If not, put Ps* into Ds
and fit the new probabilistic surrogate model, then repeat this process
until R2* meets the threshold.

Consequently, a set of experimental input parameters can be ob-
tained, and subsequent experiments can reference these parameters. The
new experimental data are then incorporated into the dataset, and this
process is repeated until the prediction model’s accuracy meets the
applied requirements.

Table 1 illustrates the difference in data acquisition methods be-
tween expert-driven and data-driven methods. The expert-driven
method relies on the experience of experts, which is often based on
previous research materials. However, this method provides limited
assistance, as research objectives and models can vary widely. Experts
typically adjust one parameter at a time to collect different data. While
this method is efficient for data acquisition, it does not consider the
relationship between dataset size and model accuracy. Experts often
terminate experiments based on their judgment after several days of
experimentation, deeming the data collection sufficient.

In contrast, the data-driven method relies on existing experimental

Table 1
The difference in data acquisition methods between traditional expert-driven
and novel data-driven methods.

Specifications Expert-driven Data-driven

Selection
inspiration

Most from previous
researches Most from acquired data

Acquisition process
Change one of the parameters
each time

Change all parameters each
time

Termination
conditions

Expert’s experience
Feedback result with
training model

S. Sun et al.
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data from the current research system, providing more targeted guid-
ance. In this method, all parameters are determined bymachine learning
algorithms. Consequently, the model accuracy generally improves as
more data is collected. This method allows for real-time monitoring of
the experiment, enabling researchers to decide whether to continue or
terminate the experiment based on the model’s performance. The
detailed procedures for the two data acquisition methods are shown in
Note S4 in the Supplementary Information.

In this work, a highly accurate prediction model is employed to
simulate the processes of solar still experiments, aiming to comprehen-
sively demonstrate the superiority of the data-driven method. The
conventional data acquisition method is subject to occasional random-
ness, necessitating numerous experiments to substantiate the proposed
approach. Conducting numerous comparisons to draw general conclu-
sions would be labor-intensive and time-consuming. To alleviate this
burden and enhance feasibility, the study utilized a highly accurate
model trained on 813 experimental data to simulate experiments. While
the accurate model still requires a substantial amount of data, this
approach remains practical and valid. Table S3 in the Supplementary
Information Note S5 provides a comparison between experimental and
simulation data acquisition methods.

3. Results and discussions

To demonstrate the effectiveness of the highly accurate prediction
model in simulating experiments, Fig. 4 illustrates the independent
validation of dataset size and the scatter points for the BPNN prediction
model. In Fig. 4(a), two evaluation indices, R-square (R2) and mean
absolute percentage error (MAPE), are computed. As the dataset size
increases, MAPE gradually decreases. When the dataset size exceeds
200, MAPE stabilizes at approximately 6 %. Similarly, R2 stabilizes
around 0.98 once the dataset size exceeds 200. The mean absolute error
is illustrated in Fig. S4 in the Supplementary Information Note S6,
showing a similar trend to R2. Although additional data may not
significantly enhance the accuracy of the prediction model, it does not
have a detrimental effect. Therefore, a dataset comprising 813 experi-
mental data is used to train the BPNN prediction model. Fig. 4(b) pre-
sents the distribution of scatter points around the optimized BPNN
prediction model programmed. Consistently meeting expectations, the
scatter points closely align around the diagonal (black dotted line),
representing equal values. For the testing set, the R2 and MAPE are 0.99
and 3.4 %, respectively. Furthermore, a comparison between two Py-
thon packages for the BPNN model is detailed in the Supplementary
Information Note S7.

To further demonstrate the accuracy of the prediction model, the

visual performance of the BPNN model is shown in Fig. 5. The orange
line represents the predicted production, while the green stars indicate
the experimental data points. In Fig. 5(a), as the water temperature in-
creases, the production also increases, with the experimental points
aligning closely with the prediction line. Fig. 5(b-d) illustrates the range
of predicted production (yellow area) between the upper and lower
water temperatures under identical conditions. During the measure-
ment, the water temperature varies slightly under the same input power
of the electrical heating panel. For instance, in Fig. 5(b), where a con-
stant water temperature of 50 ◦C is targeted, slight fluctuations are
observed, with temperatures ranging from 47.5 ◦C to 52.5 ◦C. Conse-
quently, the upper and lower lines represent the predicted production at
water temperatures of 52.5 ◦C and 47.5 ◦C, respectively. Despite the
complexity of the relationship between parameters and production, the
BPNN prediction model demonstrates excellent predictive capability, as
evidenced by the agreement between experimental and predicted
values. These results affirm that the prediction model is sufficiently
accurate to simulate the experimental process, making this approach
applicable across numerous cases to highlight the advantages of using
machine learning for data acquisition.

To ensure consistent and robust findings, a comparison is conducted
across 100 pairs of cases. In each pair, the initial datasets from both the
expert-driven and data-driven methods are identical, while the subse-
quent addition of data differs. This approach ensures fairness in the
comparison. The iterative model accuracy of the expert-driven and data-
driven methods is shown in Note S8 in the Supplementary Information.
Fig. 6(a) shows the number of superior cases for varying sizes of addi-
tional data. When the added data size is 40, the data-driven method
demonstrates superiority in 50 of the 100 pairs of cases, indicating a
modest impact. At this stage, the prediction models from both methods
exhibit similar accuracy. However, as the amount of added data in-
creases, the accuracy of the prediction model using the data-driven
method improves. Specifically, when the added data size is 100, the
data-driven method shows superiority in 70 of the 100 pairs, which is
2.3 times higher than the traditional expert-driven method. Neverthe-
less, with continued data addition, the superiority of the data-driven
method diminishes. By the time 300 data are added, the data-driven
method outperforms the expert-driven method in only 64 of the 100
pairs. This trend is visually represented in Fig. 6(b), where the red cir-
cular arcs denote the superiority percentage of the data-driven method
across all cases. A larger circular arc angle signifies a higher percentage
of the data-driven method’s superiority. With the data-driven method,
as the amount of added data increases, the percentage initially rises
before declining.

Initially, when the dataset is small, the internal prediction model in

Fig. 4. (a) The accuracy of the BPNN model using a big dataset in different data sizes (b) The scattered diagram of the optimum BPNN prediction model trained by
all data.
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the data-driven method may not be accurate enough to predict pro-
duction reliably. This suggests that the selected experiment parameters
may not significantly improve the accuracy of the next predictionmodel.
As the dataset becomes larger, the internal prediction model becomes
more accurate, leading to more reliable optimization performance.
Consequently, the data-driven method becomes crucial in providing the
next experiment parameters. With the continued addition of data, the
superiority of the data-driven method gradually diminishes. This result

can be explained by the fact that when the dataset is sufficiently large,
the prediction model achieves convergent accuracy. At this stage,
regardless of the method used to increase the data, the accuracy of the
prediction model remains largely unchanged.

To further demonstrate the superiority of the data-driven method,
Fig. 7(a) compares the average number of additional data required to
achieve targeted MAPE. For instance, when the targeted MAPE is 6 %,
the data-driven method requires an average of 69 additional data in 100

Fig. 5. The visual comparison between BPNN prediction values and experiment values. (a) different water temperatures, (b) different voltage of fan, (c) different
ambient temperature, (d) different solar still types.

Fig. 6. The performance comparison between expert-driven and data-driven methods. In all 100 pairs of cases, each pair includes one expert-driven method and one
data-driven method and is individually compared. In (a), the number of superior cases inferred by MAPE is respectively counted. (b) shows the tendency of data-
driven superiority percentage in different adding data sizes. A larger circular arc angle signifies a higher percentage of the data-driven method’s superiority.

S. Sun et al.
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pairs of cases, while the expert-driven method requires an average of 81
additional data. However, the superiority of the data-driven method
becomes less apparent when the targeted MAPE is relatively high, such
as 9 % or 8 %. Nonetheless, for more stringent accuracy requirements,
such as a MAPE of 5 %, the data-driven method only requires an average
of 220 additional data, compared to the expert-driven method, which
requires an average of 258 additional data. Fig. 7(b) illustrates the
percentage reduction in data size achieved by the data-driven method
compared to the expert-driven method, showing a maximum reduction
of 14.7 %. Specifically, when aiming for a highly accurate prediction
model with a MAPE of 5 %, the data-driven method consistently out-
performs the expert-driven method across various evaluation metrics.
This highlights the effectiveness of the proposed data-driven method for
constructing high-accuracy models.

4. Conclusion

This work proposes a data-driven method for data acquisition in the
interdisciplinary study between solar stills and machine learning. The
method overcomes the limitation of the traditional expert-driven
method which relies on expert experiences. By employing the
Bayesian optimization algorithm, the data-driven method effectively
integrates data acquisition with model construction, guiding the selec-
tion of optimal experimental parameters. This accelerates the conver-
gence of the BPNN prediction model, achieving higher accuracy.

The steps to obtain a prediction model are as follows. A solar still
experimental setup is used to gather 813 data, comprising four input
parameters and one productivity value. These data are then utilized to
train and analyze a BPNN prediction model. After gathering approxi-
mately 300 data, the prediction model achieves convergent accuracy.
Subsequently, the highly accurate BPNN prediction model, trained using
the full dataset, is employed as a simulation experiment system to
compare different data acquisition methods.

Then, it is demonstrated that the superiority of the data-driven
method over the expert-driven method by a comparison of 100 pairs
of results. When a small amount of data (~40 data) is added to the
training set, both data acquisition methods show similar effects. How-
ever, with the addition of more data (150 or 200 data), models utilizing
the data-driven method exhibit greater accuracy in up to 70 % of all
comparisons. At this stage, the models have already achieved conver-
gent accuracy. Further data addition beyond this point has minimal ef-
fect on improving accuracy, resulting in a decreasing superiority rate for

the data-driven method.
Furthermore, it is recorded and compared that the dataset size

required to meet the targeted mean absolute percentage error. When
targeting a relatively large MAPE (8 %), the advantage of the proposed
method is less pronounced than the expert-driven, which reduces the
data size requirement by 0.7 %. However, aiming for a stricter MAPE of
5 %, models utilizing the data-driven method require an average of 220
data, compared to 258 data for models using the expert-driven method.
It demonstrates a maximum reduction of 14.7 % in data requirements,
highlighting its effectiveness in constructing highly accurate models.

In summary, the proposed data-driven method for data acquisition
represents a significant integration of machine learning and data
acquisition processes. It introduces novel ways that promise to advance
research in interdisciplinary between solar desalination and machine
learning.
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Note S1 Figure source in Fig. 1 

Table S1 Figure source in Fig. 1 

Section 
Drawing 
method 

Reference 

Method AI draw ERNIE Bot 

Selection 
Inspiration 

Website 

 Noisechannelrocker. Brain - Human Brain Human Head 
Clip Art PNG, https://favpng.com/png_view/brain-human-b
rain-human-head-clip-art-png/qfagg9AU 

 RESEARCH PAPER, https://flectone.ru/research-paper.html 
 Solar Still, https://www.force4.co.uk/item/Aquamate/Solar-S

till/DXG 
 StudenT Computer & Educational Services, https://www.fa

cebook.com/profile.php?id=100048610826198 
Termination 
Conditions 

AI draw ERNIE Bot 

 

  



Note S2 Experiment system and data 

Table S2 Specifics of devices and sensors in the experiments. 

Name Brand Type Range Error 

Fan LFFAN LFS0512SL 0 ~ 4800 RPM - 

Electronic balance ANHENG AH-A503 0 ~ 500 g ±0.01 g 

Power #1&#3 WANPTEK NPS3010W 0 ~ 30 V ±0.1 % 

Power #2 ITECH IT6932A 0 ~ 60 V ± 0.03 % 

Data acquisition unit 
CAMPBELL 
SCIENTIFIC 

CR1000X& 
AM25T 

25 Channels - 

Thermostat water bath QIWEI DHC-2005-A -20 ~ 99.9 °C ± 0.2 °C 

Heating panel BEISITE Custom-made 0 ~ 2000 W/m2 - 

Thermal couple ETA T-K-36-SLE -200 ~ 260 °C ± 1.1 °C 

 
 

 
Fig. S1 The pairs plot of collected data  

 

 



 
Fig. S2 The correlation heat map of collected data 

 

  



Note S3 The optimization process 

 

Fig. S3 The objective function construction 

In the objective function, the input factors consist of the next experiment 

parameters Ps∗, and the output value is the R-square calculated by the BPNN model 

trained with the updated dataset. The updated dataset includes Ps∗  and its 

corresponding production. Initially, a prediction model is acquired by training the 



original dataset obtained from the preceding step. In the study by Peng and Sun[1], it 

was observed that when the dataset is small, the Multiple Linear Regression (MLR) 

model remains stable. Therefore, two prediction models, BPNN and MLR, are 

established and compared. The more accurate prediction model is selected as the Inner 

Prediction Model (IPM) in the objective function. With the IPM, the production 

corresponding to Ps∗ can be computed. Subsequently, with the addition of new data, 

an updated dataset DS∗ is formulated. A new BPNN model can be trained using DS∗, 

and the evaluation index R-square can be determined. Finally, the R-square value is 

outputted. 

 

 

  



Note S4 Expert-driven and data-driven data acquisition procedures 

In this work, four input parameters (x1, x2, x3, x4)  are used to predict 

freshwater production. 

1. Expert-driven data acquisition method 

In the first experiment with the expert-driven method, one parameter x𝑣𝑣𝑣𝑣  is 

randomly selected as the variable parameter, while the other three parameters are 

constant parameters (xcp1, xcp2, xcp3) . The variable and constant parameters are 

randomly generated by a computer as x𝑣𝑣𝑣𝑣1  and (x𝑐𝑐𝑐𝑐10 , x𝑐𝑐𝑐𝑐20 , x𝑐𝑐𝑐𝑐30 ), respectively. The 

first set of input parameters (x𝑣𝑣𝑣𝑣1 , x𝑐𝑐𝑐𝑐10 , x𝑐𝑐𝑐𝑐20 , x𝑐𝑐𝑐𝑐30 ) is used to obtain the freshwater 

production P1  through experiment. In the second experiment, the computer only 

generates the variable parameter as x𝑣𝑣𝑣𝑣2   which is different from the existing x𝑣𝑣𝑣𝑣 , 

keeping the constant parameters unchanged, and obtaining freshwater production P2 

through experiment. In the 𝑖𝑖𝑡𝑡ℎ   experiment, the data (P𝑖𝑖, x𝑣𝑣𝑣𝑣𝑖𝑖 , x𝑐𝑐𝑐𝑐10 , x𝑐𝑐𝑐𝑐20 , x𝑐𝑐𝑐𝑐30 )  is 

recorded. When experts believe that the variable parameter needs alteration, this cycle 

completes, and the next cycle starts. This cycle repeats until the expert deems the dataset 

sufficient, completing the data acquisition process. 

2. Data-driven data acquisition method 

After obtaining an initial dataset with i sets of data, it is used to construct the 

prediction model with an initial model estimating index EI0 . In the (i + 1)𝑡𝑡ℎ 

experiment, four input parameters (𝑥𝑥1𝑖𝑖+1, 𝑥𝑥2𝑖𝑖+1, 𝑥𝑥3𝑖𝑖+1, 𝑥𝑥4𝑖𝑖+1) are recommended based 

on the proposed data-driven method, and the freshwater production P𝑖𝑖+1 is obtained. 

In the (i + 2)𝑡𝑡ℎ  experiment, the dataset is updated with the new data (P𝑖𝑖+1, 𝑥𝑥1𝑖𝑖+1,

𝑥𝑥2𝑖𝑖+1, 𝑥𝑥3𝑖𝑖+1, 𝑥𝑥4𝑖𝑖+1), the prediction model is rebuilt, and a new estimating index EI1 is 

calculated. The next set of input parameters (𝑥𝑥1𝑖𝑖+2, 𝑥𝑥2𝑖𝑖+2, 𝑥𝑥3𝑖𝑖+2, 𝑥𝑥4𝑖𝑖+2)  is then 

recommended, and the corresponding freshwater production P𝑖𝑖+2  is obtained. This 

process continues iteratively. When the experiment reaches the (𝑖𝑖 + 𝑗𝑗)𝑡𝑡ℎ iteration and 

the estimating index EI𝑗𝑗  exceeds the target threshold (EI𝑗𝑗 > 𝐸𝐸𝐸𝐸𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ), the data 

acquisition process is automatically stopped.   



Note S5 Comparison between experimental and simulation data 

acquisition methods 

Table S3 The difference in verification method between the prediction model and experiment 

Specifications Simulation Experiment 

The necessary amount of 
experimental data 

0 Unexpected 

Acquisition time per data A few seconds (sec) A few minutes (min) 

Production Accuracy ±3.4% 0 

Parameter Accuracy 0 Unknown 

Data-driven Operation Automatic Manual 

 
 

  



Note S6 The independence validation of the BPNN model 

 

Figure S4 The evaluating index MAE of the BPNN model in different data size 
 

  



Note S7 Comparing different program packages in Python 

 

 
Fig. S5 The scattered diagram of the BPNN model using all data with the “Sklearn” package. 

Figure S5 illustrates the scattered point distribution for the BPNN prediction 

model programmed using the "Sklearn" package, with the test set R2 and MAPE being 

0.98 and 4.8%, respectively. Although both Python packages for machine learning yield 

accurate results in the scatter diagram, the "Pytorch" package notably provides a better 

fit for the prediction model. This can be attributed to the "Pytorch" package's 

proficiency in the field of machine learning model fitting and its inclusion of more 

adjustable hyperparameters. On the other hand, the "Sklearn" package serves as a 

comprehensive tool for data fitting and processing, making it easier to program for 

model fitting compared to the "Pytorch" package. Therefore, the BPNN model 

programmed using the "Sklearn" package is selected for this study. 

  



Note S8 Iterative model accuracy 

 
Fig. S6 The heatmap of iterative model accuracy with proposed data-driven data acquisition 

method: (a)R-squire, (b) Mean absolute percentage error 

 



 

Fig. S7 The heatmap of iterative model accuracy with traditional expert-driven data acquisition 

method: (a)R-squire, (b) Mean absolute percentage error 

 



 
Fig. S8 The change line of iterative model accuracy with the proposed data-driven data acquisition 

method: (a) R-squire, (b) Mean absolute percentage error 

 

 

Fig. S9 The change line of iterative model accuracy with traditional expert-driven data acquisition 

method: (a)R-squire, (b) Mean absolute percentage error 
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