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ABSTRACT  

The influence of hydrated cation-π interaction forces on the adsorption and filtration 

capabilities of graphene-based membrane materials is significant. However, the lack of 

interaction potential between hydrated Cs+ and graphene limits the scope of adsorption 

studies. Here, it is developed that a deep neural network potential function model to 

predict the interaction force between hydrated Cs+ and graphene. The deep potential 

has DFT-level accuracy, enabling accurate property prediction. This deep potential is 

employed to investigate the properties of the graphene surface solution, including the 

density distribution, mean square displacement, and vibrational power spectrum of 

water. Furthermore, calculations of the molecular orbital electron distributions indicate 

the presence of electron migration in the molecular orbitals of graphene and hydrated 

Cs+, resulting in a strong electrostatic interaction force. The method provides a powerful 

tool to study the adsorption behavior of hydrated cations on graphene surfaces and 

offers a new solution for handling radionuclides. 

  



Introduction 

Currently, the global marine ecosystem is facing a significant challenge for 

radioactive pollution that needs to be addressed[1, 2]. The occurrence of accidents at 

nuclear facilities and the improper disposal of radioactive waste presents a direct threat 

to marine organisms and human health[3, 4]. The decontamination of marine 

environments, particularly the extraction of radioactive pollutants, is a critical yet 

complex endeavor that is vital for the preservation of the ecological balance and the 

public health security. 

The treatment of radioactive elements in seawater has rapidly developed over the 

years. Amongst the numerous methodologies employed, adsorption[5] and membrane 

filtration[3, 6] techniques stand out for their efficiency and ease of operation. These 

processes serve as potent tools in the arsenal against marine nuclear effluents, finding 

broad application across diverse sectors. 

Adsorption and membrane filtration are highly effective methods for removing 

radioactive materials and are extensively applied in various fields. Molecular sieves[7], 

zeolites[8], ion-exchange resins[9], and metal-organic frameworks[10] have emerged as 

pivotal materials in the efficient sequestration of radiocerium and strontium ions, 

employing either physical adsorption or chemical bonds strategies. Furthermore, 

Carbon nanomaterials, when surface-modified[11], enhance ion-material interactions, 

achieving superior adsorption efficacy. However, the associated costs and operational 

complexities remain significant hurdles. Graphene, with its unparalleled surface area 

and cost-effectiveness, emerges as a promising candidate for ion adsorption 



membranes[12, 13]. 

Graphene adsorption research has significantly increased in the past two decades. 

The strong interaction force between cation and graphene has been gradually 

recognized[14], despite its notable divergence from the prevailing perception. Molecular 

dynamics[15, 16], a powerful analytical tool, has been instrumental in elucidating 

hydrated cation-π interactions[17, 18]. Yet, the absence of a precise potential function to 

describe these interactions has hindered progress. Fang et al.'s pioneering work, 

combining quantum mechanics and molecular dynamics, led to the successful 

calibration of the Na+-π interaction potential[19, 20]. Their model predicted ion 

accumulation on graphene surfaces, validating the concept of ion sieving[21]. Other 

approaches include incorporating cation polarization effects into the empirical potential 

function[22] and modifying the depth of the potential well for C-Na interactions[23]. 

Nevertheless, these methodologies have not yet attained the desired level of accuracy, 

and their practical viability remains to be further discussed and validated. 

The interaction potential between hydrated cation is severely limited.  In previous, 

a multitude of quantum mechanical methodologies were employed, encompassing 

multi-parameter fitting and computations of multi-body interactions, among other 

sophisticated techniques. However, this approach has been beset with challenges, 

particularly when applied to the training of potential functions for systems comprising 

four or more distinct elements, such as hydrated Cs+ systems. The intricacies and 

computational demands increase exponentially, rendering the traditional quantum 

mechanical methods less feasible for such complex systems. Recently, machine 



learning methods[24, 25] offer a powerful tool with the computational efficiency of 

molecular dynamics and the precision of density functional theory (DFT)[26]. Deep 

potential (DP)[27-30] stands out for its scalability and accuracy in handling large atomic 

systems than others[31-34]. DP has been employed in diverse fields[35-38]. The adsorption 

mechanism of radioactive ions on graphene surfaces could be elucidated by the study 

of DP potentials containing hydrated Cs+-π interactions, with implications for both 

fundamental and applied nuclear wastewater treatment research. 

This study constructed a potential for hydrated Cs+-π interaction using the machine 

learning potential function method. Firstly, the accuracy of the potential function was 

validated. Secondly, the properties of the graphene surface solution, including the 

vibrational power spectrum of the water, the density, the radial distribution function, 

and the mean square displacement (MSD) were calculated. Finally, the density of states 

of the system was calculated to elucidate the nature of the hydration cs+-π interaction. 

Deep potential  

In the DP model, meticulous parameter tuning is paramount to ensure the precision 

and reliability of the resultant potential function. The DP framework assumed that the 

potential energy 𝐸 of any given configuration can be decomposed into the summation 

of individual atomic contributions Ei, each of which is a function of the local 

environment descriptor 𝐷𝑖 of atom i. This descriptor describes the local environment of 

atom i within the truncation radius. The truncation radius and smoothing radius are set 

to 0.6 nm and 0.05 nm, respectively, striking a balance between computational 



efficiency and the accuracy of the interatomic potential. The dimensions of the 

embedding network and the fitted network are (25, 50, 100) and (240, 240, 240), 

respectively. Furthermore, the hyper-parameters start-pref_e, start-pref_f, start-pref_v, 

limit-pref_e, limit-pref_f, and limit-pref_v, which regulate the weights of energy and 

force losses in the total loss function, have been set to 0.02, 1000, 0, 1.0, 1.0, and 0, 

respectively. The initial learning rate is set at 10-3 and decays exponentially to 10-8 at 

the conclusion of the training period. The number of training steps is set to 1,500,000. 

The functions trained with these optimized parameters have been demonstrated to 

achieve the training accuracy of DFT[38, 39]. thereby substantiating the rationality and 

effectiveness of the adopted parameterization strategy. 

The initial data obtained in Ab initio molecular dynamics (AIMD) is insufficient to 

encompass the entirety of the structural phase space. The DP generator package[40, 41] is 

utilized to orchestrate the Large-scale Atomic/Molecular Massively Parallel Simulator 

software. This enables an exhaustive exploration of the structural phase space and 

facilitates the procurement of structurally valid data. So, four models were crudely 

trained utilizing the preliminary dataset. Subsequently, MD simulations were conducted 

across the temperature range utilizing a DP model. Within these simulations, a 

comparative analysis was performed, focusing on the fluctuation of energies and atomic 

forces exerted by structures at distinct time points. Additionally, one DP model was 

leveraged to compute predictions for the remaining three potential function models, 

fostering a comprehensive comparison and validation process. The maximum force 

deviation 𝛿
௫ equations for the four models are as follows: 



𝛿
௫ = 𝑚𝑎𝑥ඥ〈|𝐹 − 〈𝐹〉|

ଶ〉 (1) 

When the atomic force 𝛿
௫ is smaller than 𝛿௪, the configuration is labeled as exact 

configuration, while when 𝛿
௫ is larger than 𝛿, the configuration is labeled as failed 

configuration. When 𝛿௪ <𝛿
௫  <𝛿 , the configuration is labeled as a candidate 

configuration, which will be added to the initial data set for training in the next step. A 

total of 15 iterations were performed throughout the simulation, as detailed in Table S1. 

AIMD is performed based on Vienna ab initio simulation package with the 

Perdew–Burke–Ernzerhof generalized gradient approximation and the projector 

augmented wave pseudopotentials. The base training dataset was extracted from energy, 

force and virial data obtained from an ensemble of 2,000 initial configurations. These 

configurations were subjected to a series of 10-step AIMD simulations. The 

temperature parameters for these simulations ranged from 200 K to 300 K, and the 

simulation conditions were 0 Pa with timestep of 0.5 fs[42]. As illustrated in Fig. S1, our 

study definitively demonstrates that an energy cutoff threshold of 520 eV in conjunction 

with a k-point spacing of 0.3 Å-1 is sufficient to achieve convergence of energy values 

and atomic forces. The k-point grid has been designed with a size of 3 × 3 × 1 , 

ensuring a balanced trade-off between accuracy and computational efficiency.  

The DP-gen was employed to train the interaction potential between hydrated Cs+ 

and graphene. As previously outlined, the training process encompasses three key 

components within the potential function. This iterative training process continues until 

a precision benchmark of 99% is achieved, at which point the training is terminated. 

The accuracy of the DP potential function is corroborated by a comparison of the results 



with the DFT calculations, as depicted in Fig. 1(a) through 1(d). The data set for training 

and validation purposes comprises 7,244 structures and 1,000 structures, respectively. 

The root mean square error (RMSE) values, which serve as measures of accuracy, are 

reported to be 4.25 meV/atom for the training dataset and 2.58 meV/atom for the 

validation dataset, as illustrated in Fig. 1(a) and 1(c). Further analysis in Fig. 1(f) 

elucidates the potential function curves for hydrated cation structures, revealing the 

concordance between the DFT and DP, as well as illustrating that the universal force 

field (UFF)[43] differs significantly from the DP . The high degree of accuracy exhibited 

by DP renders them eminently suitable for deployment in molecular dynamics 

simulations, ensuring reliable predictions and insights into complex systems. 
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Figure 1. The training and validation results of DP. (a) The system energy by DP (the training set) 

versus the energy by DFT. (b) The force for the training set in comparison with the results of the 

DFT calculations. (c) Energy for the test set versus the results of the DFT calculations. (d) Force for 

the training set versus the results of the DFT calculations. (e) Schematic structure of the system, 

including H2O, Cs+ and graphene. (f) The comparisons of potential function between the hydrated 

Cs+ and the graphene, calculated by DFT, DP and UFF.   

(e)                                                                 (f) 



Simulation results and discussions 

The objective of this investigation is to examine the impact of graphene π-bonds 

on the characteristics of its surface solution and to assess the discrepancies between the 

DP and UFF for property prediction. Two distinct systems, comprising 3040 atoms, 

were constructed using molecular dynamics simulations as visualized with OVITO[44] 

in Fig. 2. A significant distinction between these two systems is that classical molecular 

dynamics is unable to utilize the UFF for calculations in non-neutral systems, whereas 

DP does not incorporate the impact of charge in molecular dynamics simulations. 

Detailed UFF parameters are referenced in Ref.[19], 

 
 

Figure 2. The snapshots of the system. (a) the system of UFF, (b) the system of DP. 

The vibrational power spectrum of water is an important parameter of aqueous 

solutions. Furthermore, this section examines the impact of graphene π-bonds on the 

vibrational power spectrum of aqueous solutions, which facilitates an understanding of 

molecular vibrations. The vibrational power spectrum of a water molecule is 

determined through Fourier transformation of the autocorrelation function of the 

velocity of water. The latter can be expressed as [45]: 



𝐼(𝜈) ∝ lim
ఛ→ஶ

න 〈𝑣(𝑡 + 𝑡) ∙ 𝑣(𝑡)〉𝑒
ିଶగఔ௧𝑑𝑡

ఛ

ିఛ

 (2) 

where 𝐼 is the intensity, 𝜈 is the vibrational frequency, and 𝑣 is the velocity of the atom. 

After counting the data for another 50 ps and calculating the vibrational power spectrum 

of water containing two regions: the range of 2 nm to 4 nm (region 1) and the range of 

0.6 nm from the graphene wall (region 2).  

It is investigated that the effect of π-bonds in graphene on the vibrational power 

spectrum of water molecules. As illustrated in Fig. 3(a), the velocity spectrum reveals 

a multiplicity of distinct peaks, each attributable to specific interactions: hydrogen 

bonding, the H-O-H bend angle, and O-H bond formation, respectively. A comparison 

of the theoretical and experimental data reveals a clear agreement between the peak 

frequencies of the water vibration power spectrum in region 1 and the corresponding 

experimental[46, 47]. In the high-frequency range, the vibrational power spectrum of 

water in region 2, in proximity to graphene, is observed to be redshifted. The vibrational 

power spectrum of water molecules, as portrayed in Fig.S3, was computed under the 

application of UFF. It has been revealed through the investigations that there exists a 

considerable disparity between these computations and experimental outcomes, thus 

indicating an insufficiency in accurately delineating the inherent properties of water 

through this methodology. 



 

Figure 3. (a) The comparison of power spectra of water calculated by DP and experiment[46] at 280 

K. (b) The power spectra of water at three different temperatures calculated by DP. 

The effect of temperature on the vibrational power spectrum of water was also 

investigated. It was found that in Fig. 3(b), the low-frequency region of the vibrational 

power spectrum undergoes a redshift as temperature ascends. This spectral shift is 

predominantly rooted in the thermal-induced restructuring of the hydrogen bonding 

network, a dynamic interplay that subsequently modulates the intermolecular 

interactions within the network. At elevated temperatures, the stability of the hydrogen 

bonding network is compromised, leading to a diminution in the strength of hydrogen 

bonding interactions. This thermally-induced weakening facilitates the disruption of the 

hydrogen bonding network, thus impacting the vibration frequency. In Fig. 3(b), the 

temperature has a significant effect on the vibrational absorption peaks of the hydrogen 

bonding network of water. However, it has a limited effect on the absorption peaks of 

the bending and stretching vibrations of water. In conclusion, the presence of π-bonds 

in graphene affects the motion of water molecules within the ionic solution, which in 

turn affects the properties. 

 

(a)                                                                   (b) 



The density profile is a key parameter that assess the influence of the cation-π in 

the system. In this segment, the density of the system under 280 K,300 K and 350 K is 

investigated utilizing the LAMMPS with DP and UFF potentials. As illustrated in Fig. 

4, the results reveal that the density of graphene surface as calculated using the DP is 

approximately triple that determined through the UFF. This pronounced disparity 

underscores the superior strength of the interaction forces exerted on graphene when 

employing the DP model.  

Furthermore, a phenomenon was observed with respect to the thickness of the high-

density layer near the graphene surface. It was found that the thickness of the liquid 

film increased from 2 to 3 nm at elevated temperatures. For the DP, a separation of 

molecular clusters occurred at 350 K. This phenomenon can be attributed to the increase 

in the kinetic energy of the system ions, which enhances the intermolecular motion. 

Meanwhile, the fundamental divergence in interaction forces, as encapsulated by 

the DP and UFF models, stands as the cardinal driver behind the enrichment effect 

observed on the graphene surface. This effect, in turn, cascades into discernible 

alterations in surface density distribution and intrinsic wettability characteristics[48]. 

These deviations from the predictions rendered by the UFF method underscore the 

necessity for adopting advanced computational models, such as the DP framework, to 

accurately decipher and represent the complex interplay between hydrated cation and 

graphene surfaces. These insights differ from the prevailing view and highlight the key 

role that deep learning plays in elucidating the properties of ionic solutions on graphene 

surfaces. 



 

Figure 4. Density profile of the solution under different temperature (the grey areas 

represent single-layer graphene wall) 

The MSD is a covariate that quantifies the diffusion capacity, facilitating a nuanced 

exploration of the impact exerted by hydrated cation-π interactions on diffusive 

processes. MSD distribution in the z-direction (orthogonal to the graphene plane) for 

the ion solution, meticulously computed at 280 K, was calculated quantitatively in Fig. 

5. A substantial disparity exists between the MSD values derived from the DP and UFF 

potential. The UFF potential demonstrates a swifter attainment of equilibrium, 

accompanied by a more pronounced fluctuation in MSD values as temperatures rise. 

This divergence suggests that the DP model engenders stronger interatomic interaction 

forces. These findings unquestionably demonstrate the existence of unique interaction 

forces between hydrated cation and graphene (cation-π interaction), which are not 



accounted for by the universal force field. 

 The combination of ions and water molecules in solution systems results in the 

formation of hydrated cation, which exert an influence on the properties of the solution. 

However, the amount of bound water around Cs+ is not well known. We have embarked 

upon an analysis involving radial distribution function (RDF) and coordination number 

calculations. As illustrated in Fig. S2, the relationship between Cs+ and water molecules 

is described by RDF curves using the DP and UFF. Both RDF peak in the vicinity of 

0.33 nm. the DP shows that the coordination number in the first solvation shell agrees 

with that of the UFF potential[21]. 

To understand the adsorption mechanism of hydrated Cs+ on graphene surfaces, it 

is analyzed that the molecular orbitals and electronic structures. This approach allowed 

us to confidently identify the key factors contributing to the adsorption mechanism. The 

electronic structure analysis was based on the total density of states (TDOS) and the 

project density of states (PDOS), which provided an energy level distribution of 

 

Figure 5. The comparisons of mean square displacement along z-direction by using UFF and 

DP at 280 K. 



molecular orbitals and allowed for analysis of the contribution of each orbital. Fig. 6(a) 

displays the energy band densities of Cs+ and hydrated Cs+, revealing a shift that causes 

electrons to migrate within their empty orbitals. A comparison of Fig. 6(b) reveals that 

the presence of water molecules disrupts the electron orbital distribution of the Cs+, 

thereby corroborating the existence of electron migration within the hydrated cation. 

Fig. 6(c) illustrates that graphene and water molecules are the dominant contributors 

to the TDOS in the case of graphene and hydronium ions. This also elucidates the 

underlying cause and nature of the strong cation-π interaction force between hydrated 

cations and graphene. In Fig. 3(a), the explanation that the change in the vibrational 

frequency of the hydrogen-oxygen bond is due to the migration of electrons in the 

orbitals of graphene and water molecules is reasonable. 

In this discussion, we have conclusively elucidated that the interaction force 

between hydrated cations and the graphene surface is fundamentally due to the intricate 

interplay of electron migration. Specifically, this phenomenon involves electron 

transfer between graphene's intrinsic π-electron cloud and the molecular orbitals of the 

hydrated ions. This electrostatic force arises from the redistribution of charge density. 

This results in a strong electrostatic force that plays a key role in consolidating the 

affinity of hydrated cations for graphene. In essence, our findings not only elucidate the 

microscopic mechanism of the interaction between hydrated cations and graphene, but 

also contribute to a broader understanding of the interaction between ions and π-

electrons. This knowledge provides a theoretical foundation for subsequent ion 

adsorption and ion filtration. 



 

Figure 6. (a) The project density of states of Cs+ and Cs+ in hydrated cation; (b) The density 

of states of water in hydrated cations; (c) The total and project density of states of system 

Conclusion 

 Here, machine learning techniques were employed to train and validate the 

hydrated Cs+-π interaction deep potential and predict solution properties. The accuracy 

of DP is much higher than UFF by comparisons. 

By using molecular dynamics simulation, it is found that the water vibration power 

spectrum calculated by DP matches well with the experimental results. And the 

presence of π-bonds dampens the vibration frequency at 102 THz. This is mainly due 

to electron transfer affecting the strength of the hydroxyl bonds.  

Furthermore, the distribution of density on the surface of graphene was calculated. 

It was found that the density calculated by DP was three times higher than that of UFF. 

The MSD along the z-direction, calculated by DP, was found to be significantly smaller 

than that calculated by UFF. This can be attributed to the strong interaction forces 

between graphene and hydrated ions, which cannot be described by the UFF. The 

hydrated Cs+-π interaction force is attributed to the migration of electrons in the 

graphene π-bonds and the molecular orbitals of the hydrated Cs+, resulting in a strong 

electrostatic interaction. 

(a)                                     (b)                                         (c)  



 These findings not only deepen the understanding of the intricate interactions 

between hydrated ions and the graphene surface, but also have important implications 

for the adsorption and removal of radioactive ions on graphene substrates. A theoretical 

framework is established for the development of graphene-based materials with 

enhanced ion adsorption and filtration capabilities. 
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