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2-butanone (methyl ethyl ketone) has been identified as a potential alternative fuel and fuel tracer in recent studies. In this work, a reduced 
mechanism containing 50 species and 190 reactions for 2-butanone is developed for the first time. The raw reduced mechanism is built in three 
parts using decoupling methodology, a reduced C -C  sub-mechanism, a reduced C -C  sub-mechanism and a detailed H /CO/C  sub-4 n 2 3 2 1

mechanism. Subsequently, the self-adaptive differential evolution algorithm of machine learning is proposed for optimizing the reaction rates of 
31 reactions in the C -C  sub-mechanism to predict the ignition delay times and laminar flame speeds in constant volume bombs. The 4 n

optimized reduced mechanism is validated by the ignition delay times in shock tubes and laminar flame speeds in constant volume bombs. The 
results of the optimized reduced mechanism are similar to those of the detailed mechanism, which show it is reliable. Moreover, the 
performance of the self-adaptive differential evolution algorithm is much better than the genetic algorithm and the particle swarm optimization.
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1. Introduction
The burning of fossil fuels has brought severe environmental problems 

1, 2all over the world.  Considering the non-renewable of crude oil, 
3biomass energy  has been widely concerned as a clean and sustainable 

4-8 energy. Among numerous biofuel candidates, 2-butanone has been 

recently identified as a potential alternative fuel which can be used as an 

additive to replace ethanol in spark-ignition (SI) engines, especially for 
9its excellent knock resistance (RON = 117).  In addition, 2-butanone 

also has the ability to be used as tracer material in engines laser 
10diagnostic.  For these combustion applications, it is vital important to 

understand the combustion kinetics of 2-butanone.

The detailed mechanism of 2-butanone was firstly developed by 
11Decottignies et al.,  who used gas chromatography to measure a 

12methane/air flame doped with 2-butanone. Serinyel et al.  developed a 

detailed 2-butanone mechanism for high temperature by the 

measurement of the ignition delay times in shock tube. The 

measurement was performed at T = 1250-1850 K, P =1 atm, φ = 0.5-
132.0 and fuel concentrations in the range of 1.0 % to 2.0 %.  

14Subsequently, Badra et al.  updated the Serinyel's model by new 

measurement of the ignition delay times at P = 3, 6.5 atm and T = 
151100-1500 K. Recently, Burke et al.  developed a new 2-butanone 

detailed chemical kinetic model (PCFC_v1) including both high and 

low temperature reaction pathways, based on quantum calculations. The 

model was validated against experimental data of laminar flame speeds, 

ignition delay times, flame speciation measurements and shock tube 
16species–time profiles. Immediately after, Hemken et al.  updated the 

model and proposed PCFC_v3 by adding new reaction classes of low-

temperature for three butanoyl radicals and improving the branch ratios 

between fuel radicals. As a result, the capabilities of PCFC_v3 

prediction were improved for all the experiment measurement. Although 

the mechanism has been validated well, it contains 387 species and 

2174 reactions, which is too large to be used in a CFD (Computational 

Fluid Dynamics) simulation. Therefore, a reduced mechanism of 2-

butanone is required for the engineering application. However, scarce 

works have studied the reduced mechanisms of 2-butanone.

Several methods have been proposed for the mechanism 

reduction. Traditional methods can be summarized as the direct 
17, 18 19, 20reduction,  the directed relation graph with error propagation,  

21 22chemical lumping  and time-scale analysis. Obviously, all reduction  

methods need to remove some species and reactions in reduced 

mechanism. Therefore, in order to improve the prediction accuracy of 

the reduced mechanism, it is necessary to adjust the rate constants of 

some remaining reactions. In previous work, reaction rates adjustment 
23was usually completed by manual operation,  which is time-consuming 

and complicated. In recent years, many machine learning algorithms 
24-30have been used to solve traditional problems.  For mechanisms 

31reduction, a chaos genetic algorithm (CGA) proposed by Liu et al.  was 

performed for the reaction rates adjustment of reduced mechanism. 
32Chang et al.  used the Non-dominated Sorting-based Genetic Algorithm 

33and uncertainty quantification  to develop an accurate reduced 

mechanism of n-pentanol. All of these algorithms belong to the class of 

evolution algorithms (EAs), in which the performance mainly depends 

on the combination of different generation strategies and control 

parameters. In order to get the most appropriate generation strategy and 

control parameters, it is generally needed to perform an exhaustive 
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search, thus, resulting in a huge amount of computational costs, 

especially impossible for chemical kinetics calculation. Therefore, the 

effective and accurate algorithms for optimization are required. The self-

adaptive differential evolution algorithm (SaDE) was developed by 
34Suganthan et al.,  in which both generation strategy and control 

parameters are adaptive adjustment during evolution. Consequently, the 

more suitable generation strategy and control parameters can be 

determined automatically at different phases of evolution process.

In the present work, the 2-butanone raw reduced mechanism 
35 containing 50 species and 190 reactions is built in three parts, a 

reduced C -C  sub-mechanism, a reduced C -C  sub-mechanism and a 4 n 2 3

detailed H /CO/C  sub-mechanism. Subsequently, the self-adaptive 2 1
34differential evolution algorithm (SaDE)  is employed to optimize the 

reaction rate constants automatically due to its fast convergent speed 

and convenient operability. The ignition delay times in shock tube and 

laminar flame speeds are used for the validation of the reduced 

mechanism. Finally, the performance of SaDE algorithm is compared 

with genetic algorithm and particle swarm optimization.

2. Methodology
2.1 The SaDE algorithm 

Fig. 1 is the data flow diagram of SaDE algorithm. The main process of 

SaDE, similar to other evolutionary algorithms (Eas), is aimed to find 

better fitness value (minimization task usually) through the iteration of 
36the population.  The population is updated by genetic operators of 

mutation, crossover and selection like Darwinian evolution. The initial 

population was generated by coding genes in domain of definition 

randomly and a fitness function is set as the evolution index. Then 

genetic operators (mutation and crossover) will be performed on present 

population to generate new individuals. Subsequently, the greedy 

selection strategy, which means a new individual will be passed if and 

only if it has a better fitness value, is used to choose the final individual 

for next generation. Obviously, the update of the mutation strategy and 

control parameters self-adaptation in crossover are crucial steps of SaDE 

algorithm and presented as follow:

1) The update of the mutation strategy

The mutation strategy pool for present work consist of four different 

strategies,  i,e.  “DE/rand/1/bin”,  “DE/rand-to-best/2/bin”, 

“DE/rand/2/bin”, “DE/current-to-rand/1”. They are effective and famous 

mutation strategies in DE algorithm and the name means the generation 

rule of mutation individual. A mutation strategy is selected to generate 

new mutant individual according to the success probability learned from 
34previous generations.  The success probability is calculated by the 

following equation,

S  represents the selection probability of strategy k in generation k,G

G. LP is the learning period during evolution process. ns  is the number k,g

of individuals generated by the k strategy, which successfully passing 

the greedy selection within the previous LP generations. ns  is the f,g

number of failed individuals. Moreover, a small constant value = ∈ 

0.01 is assigned to avoid the potential null values.

2) Parameter self-adaptation 

SaDE algorithm has three crucial control parameters, i,e. population size 

NP, scaling factor F, and crossover rate CR. NP is suggested no less 
34than 5 times of genes.  F and CR are defined as followed:

Fig. 1 The data flow diagram of SaDE algorithm.
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where N means a normal distribution, CRm is the mean value of CR 

learned from previous LP generations and CRm is initialized as 0.5.

As demonstrated by a large number of numeric simulation 
37experiments in,  the choice of strategy will make a great difference 

when solving different optimization problems. For specific problems 

with different characteristics, the value of CR and F has a significant 

impact on algorithm performance, especially for the convergence speed. 

By dynamically adjusting the generation strategy and control 

parameters, the SaDE algorithm can maintain both exploitation and 

exploration ability throughout the entire evolution process. According to 
34the accurate results on various test functions  and the process of 

automatic regulation, it is concluded that SaDE algorithm possesses 

robust performance to handle optimization problems with distinct 

properties.

2.2 Simulation of the ignition delay time and laminar flame speed.

The ignition delay time was simulated using a zero-dimensional model 
38with constrained volume and adiabatic boundary in Cantera 2.4.0. 

The laminar flame speed was defined as the propagation speed of 
39a steady, laminar, one-dimensional, planar, adiabatic flame.  In the 

present work, it was simulated using the freely-propagating, premixed 
38flame model in Cantera 2.4.0.  The soret effect was accounted for and 

the multi-component transport model was applied. The grid ratio was 

set to 3, the slope 0.07 and the curve 0.14 to make sure the results are 

independent of the grid.

2.3 Genetic algorithm and particle swarm optimization

As mentioned above, many evolutionary algorithms (EAs) have been 

proposed for global optimization problem. In the present study, in order 

to further estimate the performance of SaDE, two famous evolutionary 
40algorithms, genetic algorithm (GA)  and particle swarm optimization 

41(PSO),  are also conducted for 2-butanone reduced mechanism 

optimization. 

The typical genetic algorithm encodes the potential solutions by 

genes for a specific problem, and uses genetic operators to evolve these 

genes to get the convergent solution. Crossover rate is the crucial 

control parameter involved in GA. The algorithm is expected to 

converge fast with a small CR value and express a better exploration 
42power with a large CR value.  

Particle swarm optimization is inspired by the social species in 

nature, like bird, ant and fish. It is initialized with a population of 

random solutions and each potential solution is assigned a randomized 

velocity. Then, the potential solutions, named particles, will search 

through the domain for best solution as a fish school searching for food. 

Obviously, a large velocity can search solution domain fast but may 

miss the best solution. A small velocity, which mean a high resolution 

ratio, can search the solution more carefully while the rate of 
43convergence is slow. 

3. Mechanism construction
In this study, the 2-butanone raw reduced mechanism is built using the 

44-46decoupling method.  The main step to build a reduced mechanism is 

as follow:
47First of all, based on the path analysis of the PCFC-v3,  the main 

reaction pathways during the combustion of 2-butanone are identified. 

Secondly, the isomers of large molecules or radicals are represented by 

only one empirical formula. For example, C H O represents for 4 7

CH CHCOCH , CH CH COCH  and CH CH COCH , which are H-3 3 2 2 3 3 2 2

abstraction products of butanone. Only the thermal and transport 

properties of CH CHCOCH  will be adopted due to its lowest bond 3 3

dissociation energy. As a result, the amount of 2-butanone H-abstraction 

reactions can be greatly reduced from 39 in PCFC-v3 to only 3 in the 

reduced mechanism. The major reaction pathway related to fuel 

molecule was then developed in this way and shown in Fig. 2. The 

Fig. 2 Major reaction paths of reduced 2-butanone mechanism.
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reduced C -C  sub-mechanism still includes the high-temperature, the 4 n

low-temperature and the functional group reactions.
32The reduced C -C  mechanism is mainly taken from  due to its 2 3

good performance. Further, several reactions involving CH CHO and 3

CH CHCO, which are important intermediates during the oxidation of 3

2-butanone, are integrated into the reduced C -C  mechanism.2 3
48, 49The detailed H /CO/C  sub-mechanism is taken from  due to its 2 1

accuracy in predicting ignition delay time, JSR species measurement, 

flow reactor species measurement and laminar flame speed.

By combining the reduced C -C  sub-mechanism, the reduced C -4 n 2

C  sub-mechanism and the detailed H /CO/C  sub-mechanism, a 2-3 2 1

butanone raw reduced mechanism with 50 species and 190 reactions is 

constructed.

4. Mechanism optimization
In the raw-reduced mechanism built above, the reaction rates of C -C  4 n

sub-mechanism are taken from the detailed mechanism PCFC_v3 
15, 47developed by Burke et al.  The results calculated by the raw-reduced 

mechanism is shown in Fig. 3. It can be seen that the predicted results 

of raw-reduced mechanism are extremely bad among all conditions. 

Thus, it is necessary to tune the reaction rates of C -C  sub-mechanism 4 n

to improve the performance.

4.1 Optimization setting

In the present study, the reaction rates adjustment was performed by 
34SaDE algorithm.  Each individual represents a potential reduced 

mechanism of 2-butanone, and the genes in individual are reaction rates 

of 31 reactions in the C -C  sub-mechanism, which are listed in Table 2. 4 n

The population consists of 200 individuals (no less than 5 times of 

genes) and the individual consists of 37 genes (2 multiplicative factors 

of pre-exponential factors for the pressure-dependent reactions including 

R4, R21, R26, R27, R28 and R29).

The fitness function is defined as follows:

where f (x ) is the fitness value of i-th individual in the generation g; N i,g

is the number of different experimental conditions; and  represent τ  τk 0

the simulated and experimental data, respectively.

Moreover, a terminal condition shown in Eq. (6) is introduced to 

improve the convergence of the optimization progress.

where f  and f  represent the minimum fitness value of generation g min,g min,g-30

and generation g-30, respectively. In other words, the best optimized 

reduced mechanism of generation g and generation g-30. Once the 

termination condition is met, the best individual of generation g is 

obtained as the final convergent solution, and the optimized reduced 

mechanism.

The main steps for optimizing raw-reduced mechanism shown in 

Fig. 4 can be expressed as follows:

1) The initial population was generated randomly by assigning 

value to individuals within the domain of genes.

2) The ignition delay times and laminar flame speeds at all 
38conditions are calculated using Cantera code.  Then, the fitness value of 

each individual is calculated.

3) The terminal condition is judged. If yes, the final convergent 

solution is output, otherwise, the update of mutation strategy and 

Fig. 3 Simulated results of raw-reduced mechanism. Dots represent experimental data, solid lines represent the simulated data.

,
1

1

Research PaperES Materials & Manufacturing

Terminal condition ,v v ,

,m m

1e

   ES Mater. Manuf., 2019, 6, 28–37 | 31© Engineered Science Publisher LLC 2019



parameter adaption are conducted by learning from previous LP 

generations.

4) The new generation is generated by using the operator of 

mutation, crossover and selection in the mating pool.

5) Steps 2) - 4) are repeated until the terminal condition is met.

4.2 Optimization object

For the optimization of the reduced mechanism, the ignition delay times 
12measured by Serinyel et al.  at T = 1250-1850 K, P = 1 bar, φ = 0.5-

15 2.0, Burke et al. at T = 960-1300 K, P = 20 and 40 bar, φ = 1.0 and 
15laminar flame speeds measured by Burke et al.  at T = 373 K, P = 1 bar 

and 5 bar, φ = 0.7-1.3, are set as the training dataset (Cases 1-8) for 

optimization process. Moreover, to further validate the reliability of 

reduced mechanism, the ignition delay times measured by Serinyel et 
12al.  at T = 1250-1850 K, P = 1 bar, φ = 1.5 and 2.0 and laminar flame 

50speeds measured by Serinyel et al.  at T = 305 K, P = 1 atm, φ = 0.7-

1.4, are set as the test dataset (Cases 9-11) for final validation. Table 1 

lists the conditions and mixture compositions, in which φ is the 

equivalence ratio.

4.3 Optimization results
The evolution of the fitness function is shown in Fig. 5. As can be seen 

from Fig. 5, the terminal condition is met at 173th generation. Thus, the 

best individual in 173th generation is obtained as the final convergent 

solution. The result of optimized reaction rates is listed in Table 2.

4.4 Evaluation indicators of mechanism

Mechanism results are evaluated through two indicators, including mean 

absolute error (MAE) and mean absolute percentage error (MAPE), 

which are defined as follows:

where f  is the predicted value and y  is the experimental value.i i

Fig. 4 The implementation process of reaction rates adjustment by SaDE algorithm.

Table 1 Conditions and mixture compositions in the present study.

  Case  Pressure  φ 2-butano ne (%) O2 (%) Ar (%) 

Training  

set 

Ignition delay 

times  

1 1 atm  0.5  1 11  88 

2 1 atm  1 1 5.5 93.5  

3 1 atm  2 1 2.75 96.25 

4 1 atm  1.25 1.25 5.0 93.75 

5 20 bar  1 1  5.5 93.5  

6 40 bar  1 1 5.5 93.5  

 Case  Pressure  T (K) φ O2 (%) N2 (%) 

Laminar 

flame speeds  

7 5 bar 373 0.7~1.3  5.5 20.68 

8 1 bar 373 0.7~1.3  5.5 20.68 

  Case  Pressure  φ 2-butanone  (%) O2 (%) Ar (%) 

Test set 

Ignition delay 

times  

9 1 atm  1.5  1.5 5.5 93 

10 1 atm  2.0  2.0 5.5 92.5  

 Case  Pressure T (K) φ O2 (%) N2 (%) 

Laminar 

flame speeds  
11 1 atm 305 0.7-1.4 5.5 20.68 

 

1

1

1

1
1
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Table 2 Arrhenius rate constants adjustment results.

Reaction 

NO. 
Reactions  

Arrhenius rate constants  

Raw-reduced  

mechanism  

Optimized reduced  

mechanism  

R1 C2 H5COCH 3 + OH <=> C 4H7O + H2O 2.36e+02  3.72e+01  

R2 C2H5COCH3 + H <=> C4 H7O + H2  1.99e+06  3.37e+06  

R3 C2H5COCH3 + CH3O2 <=> C 4H7O + CH3O2 H 1.87e-03 4.99e-02 

R4 
C2H5COCH3 (+ M) <=> C 2H5 + CH3CO (+ M) 3.58e+27  2.74e+28  

Low-pressure limit  2.58e+79  8.24e+77  

R5 C4H7O <=> CH 3 + CH3CHCO  1.56e+20  7.40e+21  

R6 C4H7O + HO2 <=> RO + OH 1.76e+29  1.90e+30  

R7 C4H7O + CH3O2 <=> RO + CH3O 2.51e+25  5.02e+26  

R8 C4H7O + O 2 <=> ROO 5.82e+60  7.24e+61  

R9 C4H7O + O 2 <=> ROO 1.17e+107  1.57e+108  

R10 RO <=> CH 3CO + CH3CHO  8.68e+10  1.91e+12  

R11 RO <=> CH 2O + C2H5CO 1.14e+13  1.21e+14  

R12 CH2O + CH3COCH2 <=> RO 6.25e+10  1.23e+12  

R13 ROO <=> C 2H3COCH3 + HO 2 1.80e+54  2.23e+55  

R14 ROO <=> QOOH  2.52e+12  1.25e+13  

R15 QOOH <=> C 4H6O2 + OH 7.50e+10  1.15e+12  

R16 QOOH => CH 2CO + OH + CH3CHO 3.10e+18  3.97e+19  

R17 QOOH => CH 3CHCO + OH + CH2O 1.18e+09  2.26e+10  

R18 C4H6O2 + OH => H 2O + HCCO + CH3CHO 2.50e+12  3.58e+13  

R19 C4H6O2 + OH => H 2O + CH3CO + CH2CO 2.50e+12  5.77e+13  

R20 C4H6O2 + OH => H2O + HCO + C2H3CHO  2.50e+12  4.41e+13  

R21 
C2H3COCH3 (+ M) <=> C 2H3CO + CH3 (+ M) 9.77e+20  1.09e+22  

Low -pressure limit  2.34e+73  1.87e+74  

R22 H + C2H3COCH3 <=> C 2 H4 + CH3CO 1.03e+18  1.37e+19  

R23 C2H3COCH3 + OH <=> CH 3CHO + CH3CO 4.12e+24  7.43e+25  

R24 CH3CHO + H <=> CH 3CO + H2 1.31e+05  3.14e+06  

R25 CH3CHO + OH <=> CH 3CO + H2O 3.37e+12  7.04e+13  

R26 
CH3CHO (+ M) <=> CH 3 + HCO (+ M)  2.45e+22  7.11e+23  

Low -pressure limit  1.03e+59  2.94e+60  

R27 
CH3CHO (+ M) <=> CH 4 + CO (+ M)  2.72e+21  3.21e+22  

Low -pressure limit  1.14e+58  2.43e+59  

R28 
CH3CO (+ M) <=> CH 3 + CO (+ M)  1.07e+12  2.40e+13  

Low -pressure limit  5.65e+18  7.44e+19  

R29 
CH3CHCO (+ M) <=> C 2H4 + CO (+ M) 1.81e+10  1.59e+13  

Low -pressure limit  1.00e+54  2.08e+56  

R30 CH2CO + CH3 <=> CH3COCH2  1.76e+04  2.70e+05  

R31 C2 H5 + CO <=> C 2H5CO 1.51e+11  1.01e+12  
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Fig. 5 The evolution of the fitness function.

4.5 Prediction results

The comparisons between the predicted results using different 

mechanisms and the experimental data at Cases 1-8 are shown in Fig. 6. 

As can be seen, the optimized reduced mechanism predicts 

experimental data well for both the ignition delay times and laminar 

flame speeds. The optimized reduced mechanism has similar trend with 

detailed mechanism in all conditions. The detail errors of MAE and 

MAPE are shown in Table 3. The errors of optimized reduced 

mechanism are much less than those of the raw-reduced mechanism and 

even less than the detailed mechanism expect Case 6. It indicates that 

reduced mechanism optimized by SaDE algorithm is reliable for the 

prediction of ignition delay times and laminar flame speeds of 2-

butanone. 

4.6 Mechanism validation

Cases 9-11, which are not used for training during optimization process, 

are employed to validate the reduced mechanism. As shown in Fig. 7, 

the optimized reduced mechanism also predicts well experimental data, 

12, 15Fig. 6 Comparison between optimized reduced mechanism, raw reduced mechanism and detailed mechanism at Cases 1-8, experimental data are from.
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and has the comparable performance as the detailed mechanism. It 

indicates that optimized reduced mechanism has stable predictive 

performance. The detail errors of MAE and MAPE are listed in Table 4. 

Considering the both good performance of reduced mechanism for 

training set and test set, it can be conclude that the reduced mechanism 

optimized by SaDE is reasonable and believable in prediction at low-to-

high temperatures and different pressures. 

Table 3 Comparison of estimation performance of different mechanism at Cases 1-8.

Conditions  
Detail mechanism  

Optimized reduced 

mechanism  
Raw-reduced mechanism  

MAE(μs)  MAPE(%)  MAE(μs)  MAPE(%)  MAE(μs)  MAPE(%)  

Case 1  41.18 15.46 26.72 8.78 84.23 30.46 

Case 2  110.08  21.10 54.83 11.30 179.56  41.53 

Case 3  114.01  26.65  75.83 15.43 266.31  68.91 

Case 4  114.94  22.94 45.75 6.71 168.59  42.45 

Case 5  107.69  13.92 31.37 5.28 909.65  125.1  

Case 6  119.07  9.19 67.17  15.17 1413.35  143.8  

 MAE(m/s)  MAPE(%)  MAE(m/s)  MAPE(%)  MAE(m/s)  MAPE(%)  

Case 7  0.024 7.20 0.019 5.88 0.12 41.76 

Case 8  0.018 3.85 0.015 3.46 0.21 48.59 

 

12, 50Fig. 7 Comparison between optimized reduced mechanism, raw reduced mechanism and detailed mechanism at Cases 9-11, experimental data are from.

Research PaperES Materials & Manufacturing

5. Comparison between SaDE and other
 evolutionary algorithms

2-butanone reduced mechanism optimization are also conducted using 
51 41genetic algorithm (GA)  and particle swarm optimization (PSO),  

respectively. The crossover rates used in GA and particle velocities used 

in PSO are listed in Table 5. The fitness values during the evolution 

process of different algorithms are shown in Fig. 8(a). Due to the large 

CR value of GA_2 and the small velocity of PSO_2, GA_2 and PSO_1 

express a better performance than GA_1 and PSO_2, respectively. 

Overall, SaDE obtains a smaller fitness value and a faster convergent 

solution than other algorithms.

The absolute percentage errors of the prediction results of Cases 1-

11 by five reduced mechanisms are shown in Fig. 8(a). Boxplot can 
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Table 4 Comparison of estimation performance of different mechanism at Cases 9-10.

Conditions  
Detail mechanism  

Optimized reduced 

mechanism  
Raw-reduced mechanism  

MAE(μs)  MAPE(%)  MAE(μs)  MAPE(%)  MAE(μs)  MAPE(%)  

Case 9  128.55  27.36 53.08 8.92 177.65  43.66 

Case 10  65.88 21.25 59.24 13.03 146.77  44.69 

 MAE(m/s)  MAPE(%)  MAE(m/s)  MAPE(%)  MAE(m/s)  MAPE(%)  

Case 11  0.012 3.76 0.008 2.48 0.142 40.61 

 

Fig. 8  (a) Boxplot of absolute percentage error of reduced mechanisms optimized by different algorithms. (b) Comparison of fitness value in evolution 

among different algorithms.

Table 5 Control parameters of different algorithms.

Algorithms  Crossover rate  Algorithms  Particle velocity  

GA_1 0.5 PSO_1 0~1 

GA_2 0.9 PSO_2 3~4 
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accurately describe the discrete distribution of data and compare the 

differences between different groups of data. The small box means that 

most data are within a small range. As can be seen in fig. 8(a), the 

mechanism optimized by SaDE has smaller absolute percentage errors 

in total, which means a more stable performance than other algorithms. 

Moreover, due to dynamic adjustment of generation strategy and control 

parameters, SaDE can avoid the time-consuming exhaustive search for 

the most suitable combination, which make it have better robustness for 

various problems with different characteristic. It is concluded that SaDE 

is more effective and reliable in obtaining best solution for reaction rates 

adjustment than other algorithms. 

6. Conclusion
The 2-butanone reduced mechanism containing 50 species and 190 

reactions is developed for the first time. Firstly, the raw reduced 

mechanism is built in three parts, i.e., a reduced C -C  sub-mechanism, a 4 n

reduced C -C  sub-mechanism and a detailed H /CO/C  sub-mechanism. 2 3 2 1

Secondly, the reaction rates of 31 reactions in C -C  sub-mechanism are 4 n

optimized by self-adaptive differential evolution algorithm to predict the 

ignition delay times (Cases 1-6) and flame speeds in constant volume 

bombs (Cases 7-8). The optimized reduced mechanism is validated by 

the ignition delay times in shock tubes (Cases 9-10) and laminar flame 

speeds in constant volume bombs (Case 11). The results of the 

optimized reduced mechanism are similar to those of the detailed 

mechanism. Therefore, the reduced mechanism is reliable for the 

prediction of ignition delay times and laminar flame speeds of 2-

butanone. 

Mmoreover, the performance of self-adaptive differential 

evolution algorithm is much better than the genetic algorithm and the 

particle swarm optimization. The results demonstrate that self-adaptive 

differential evolution algorithm has faster convergent speed and smaller 

errors over a wide range of conditions. This work indicates that self-

adaptive differential evolution algorithm has better robust performance 

and it may be a guide for future work to solve various global 

optimization problems in energy and fuel study.
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