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ABSTRACT

The thermal management has been widely focused due to its broad applications. Generally, the deformation can largely tune the thermal
transport. The main challenge of flexible electronics/materials is to maintain thermal conductance under large deformation. This work
investigates the thermal conductance of a nano-designed Si metamaterial constructed with curved nanobeams by molecular dynamics simu-
lation. Interestingly, it shows that the thermal conductance of the nano-designed Si metamaterial is insensitive under a large deformation
(strain��41%). The new feature comes from the designed curved nanobeams, which exhibit a quasi-zero stiffness. Further calculations
show that, when under large deformation, the average stress in nanobeam is ultra-small (<151MPa), and its phonon density of states are
little changed. This work provides valuable insight on the multifunction, such as both stable thermal and mechanical properties, of nano-
designed metamaterials.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0158794

Rationally designed metamaterials by the advanced fabrication
techniques1,2 have attracted great attention due to their new function-
ality, such as high strength/stiffness to weight ratio,3 recoverability
under strain,2 low thermal conductivity,4–8 damage resistance,9 and
quasi-zero-stiffness.10 Designing nanostructured metamaterials is of
great importance to achieve unprecedented multifunction.

The thermal properties of metamaterials can be severely sup-
pressed by designing nanoscale structures, which benefits applications
in phononics, thermoelectrics, thermal insulations, etc.11,12 However,
most nanostructured metamaterials are designed relatively simple in
morphology, such as nanomesh,5 phononic crystal,7 and nanopho-
nonics with local resonators.8 Designing morphologies of nanostruc-
tures provides new degrees of freedom to manipulate thermal
properties.13–16 For example, curved nanostructures, like kinked/bent
nanowires and nanoribbon, can cause large modulation of thermal
conductivity (j).15,17–21 Moreover, designing a film with a wavy-
structure can endow a rigid film with flexibility.22,23 Therefore, the
thermal properties of metamaterial with designed morphology needs
further investigation.

A deformation or strain is inevitable for devices in practical appli-
cations. Especially, flexible electronics and devices involve large defor-
mation. Therefore, it is demanded that metamaterials possess stable

thermal and mechanical properties under large deformation.24

However, many investigations found that the deformation has an
obvious effect on j of nanostructures.25–31 Only a few works reported
an insensitive j under a smaller deformation (strain <1%).32,33 It is
less studied that nanostructured metamaterials have insensitive j
under a larger deformation.

The question we address here is whether a nanostructured meta-
material with designed morphology can have both stable mechanical
properties and thermal properties under deformation. Here, a meta-
material with designed curved Si nanobeams (DCSiNBs) is studied
with a large deformation (strain�� 4 1%) by nonequilibriummolecu-
lar dynamics (NEMD). The deformation effect on thermal conduc-
tance (r) is systematically investigated. Furthermore, the stress and
phonon density of states (DOS) are calculated to understand the
underlying mechanism.

The designed Si metamaterial is constructed by periodic arrange-
ment of the unit cell (shown in the red dashed rectangular) in
Fig. 1(a). The unit cell without deformation has length (L) of 347.6 Å
and height (H) of 114.1 Å in y and x directions, respectively. The unit
cell is built with DCSiNBs (shown in the blue dashed rectangular).
DCSiNBs have a thickness of 10.9 Å (denoted as DCSiNB-I). The
deformed Si metamaterial is constructed by the deformed unit cell
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with deformed DCSiNB. The deformation is described by the displace-
ment (Dx) of top end of the unit cell in the �x direction. The genera-
tion of the DCSiNB with quasi-zero stiffness (QZS) and the procedure
to obtain the deformed DCSiNB are shown in Fig. S1 in the supple-
mentary material.

The thermal conductance of the designed Si metamaterial in the
x direction is calculated by the NEMD method using one unit cell by
LAMMPS.34 The fixed boundary conditions are applied in the x direc-
tion, and periodic boundary condition is applied in y and z directions.
The size of the unit cell in the z direction is set as 32.6 Å to obtain con-
verged r. The interaction between Si atoms are described by
Stillinger–Weber potential,35 which has been widely applied in Si
nanostructures. Langevin heat baths36 with temperature of 310 and
290K are applied at the two ends of the unit cell in the x direction,
respectively. The time step of NEMD simulation is set as 0.5 fs. In the
beginning, the simulation runs 4 ns to reach a steady state. Then, the
simulation runs 5 ns to get an averaged heat flux and temperature pro-
file. The structure of the designed Si metamaterial is largely deformed
by compression; however, the distance of heat path is hardly changed
(the length of the DCSiNBs along the axial direction). To take into
account the designed feature, the thermal conductance is used in this
work, which is calculated as

r ¼ � J
A � DT ; (1)

where J is the total heat current, A is the cross section area of the unit
cell, and DT is the temperature difference between the two ends. The
final results of r are averaged over six simulations with different initial
conditions. The error bar is the standard deviation of the six
simulations.

The dependence of thermal conductance of the designed Si meta-
material on the displacement of top end of the unit cell from 0.0 to
46.7 Å is shown in Fig. 1(b). The thermal conductance calculated using
two unit cell of the designed Si metamaterial is shown in Fig. S9 in the
supplementary material. Interestingly, the r along the x direction is
insensitive to the large deformation (strain �� 4 1%), which is differ-
ent from the strain effect on Si nanowire and Si film.30 This result indi-
cates that the designed Si metamaterial can provide a stable thermal
property when working under deformation conditions.

The deformation of the designed Si metamaterial is determined
by its unit cell and the behavior of DCSiNBs. Therefore, the thermal
transport behavior of the deformed DCSiNBs is studied in detail. The
deformed DCSiNB-I with Dx¼ 0.0, 27.3, and 46.7 Å are shown in Fig.
2(a). In addition, the force-displacement curve of the deformed
DCSiNB-I is calculated in Fig. S2 in the supplementary material, which
indicates the QZS feature of DCSiNBs.

The r and temperature profile of the DCSiNB-I in the x direction
is shown in Figs. 2(c) and 2(b). The structure of the corresponding
straight Si beam of DCSiNB-I is shown in Fig. S6(a), which has the
same thickness and number of atoms as DCSiNB-I. The temperature
distributions in both x and y directions are calculated in Fig. S6 in the
supplementary material. The r of the DCSiNB-I without deformation
(Dx¼ 0.0 Å) is reduced by 15.8% compared to that of the straight
beam without compression (black dashed line); however, it is insensi-
tive to the deformation as the displacement increases, which produces
the same trend as that of the designed Si metamaterial.

To further understand the underlying mechanisms, DOS of the
deformed DCSiNB-I with Dx¼ 0, 27.32, and 46.67 Å and the straight
Si beam are calculated by the general utility lattice program (GULP)37

in Fig. 2(d). The local DOS of atoms in DCSiNB-I are also calculated
in Fig. S7 in the supplementary material. The DOS peaks of the
DCSiNB-I are much smaller than that of the straight Si beam when
the frequency is between 3.5 and 14THz. Moreover, the DOS of
DCSiNB-I is almost unchanged as the deformation increases, which
indicates that the distribution of modes in DCSiNB-I is little affected
and can cause the deformation insensitive r of DCSiNB.

To investigate if the size of the DCSiNB can affect the thermal
transport behavior under deformation, a thicker DCSiNB [denoted
as DCSiNB-II in Fig. 3(a)] whose size doubles that of DCSiNB-I in
Fig. 2(a) is studied. The DCSiNB-II also shows a plateau in the force–
displacement curve [Fig. S2(a) in the supplementary material]. The
corresponding straight Si beam with thickness of 21.72 and length of
47.8 Å is studied for comparison. The temperature profiles and heat
flux of DCSiNB-II are calculated in Fig. S5 in the supplementary mate-
rial. As shown in Fig. 3(b), DCSiNB-II without deformation
(Dx¼ 0.0 Å) can cause 28.6% reduction of r compared with the
straight Si beam. Similar as the DCSiNB-I, the deformed DCSiNB-II

FIG. 1. (a) The structure of the designed Si metamaterial. The designed Si metamaterial is constructed by periodic arrangement of the unit cell (shown in the red dashed rect-
angular). DCSiNBs have a thickness of 10.9 Å (denoted as DCSiNB-I). The generation of DCSiNBs in simulation is shown in Fig. S1 in the supplementary material. (b) The
thermal conductance of the deformed Si metamaterial vs the displacement of the top end of the unit cell from 0.0 to 46.7 Å at 300 K in the �x direction. The insets show the
structure of the unit cell of the designed Si metamaterial without deformation (Dx¼ 0.0 Å) and with a deformation (Dx¼ 46.7 Å).
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also has almost unchanged r as the displacement increases, which fur-
ther confirms the deformation insensitive r of the designed Si
metamaterial.

To further understand the deformation insensitive r, the local
stress in the deformed DCSiNB-I with Dx¼ 0, 27.32, and 46.67 Å are
calculated by LAMMPS.34 The value of the local stress is according to
the color bars. Figure 4(a) shows that only the locations with larger
curvature have relatively larger local stress, while most parts have a
small value of local stress in DCSiNB-I. Furthermore, Fig. 4(b) shows
that the average values of local stress (rxx; ryy; andrzz) of the three
sections [S1–S3 in Fig. 4(a)] are ultra-small (<151MPa) compared
with the stress of bulk Si with strain¼�0.5%,38 Si nanowire with
strain¼ 1%,24 and the bent Si nanowire21 at half diameter region.
Consequently, a large deformation just causes a small local stress in
DCSiNB-I, which in turn leads to the deformation insensitive r.

With the development of nanotechnology, the nanostructures can
be fabricated to several nanometers.39–43 For example, the thickness of
the ultra-thin hydrogenated amorphous silicon films can be reduced to
3.4 nm,39 the diameter of nanowires can be fabricated to as small as 241

and 1.3 nm.40 To verify whether the Si nanobeam with thickness capa-
ble of experimental fabrication can preserve the thermal properties and
mechanical properties, Si nanobeam with thickness of 3.26 and 4.34nm
are further studied with the same settings as that in Fig. 2. The structure
of DCSiNBs with thickness of 3.26 and 4.34nm are in Figs. 5(a) and
5(b), respectively. As shown in Fig. 5(c), the thermal conductance of
these DCSiNBs is also insensitive to the deformation. In addition, their
force-displacement curves vs displacement are added in Fig. S8 in the
supplementary material. Therefore, the thicker DCSiNBs, which could
be expected experimentally fabricated, can have the same trend of ther-
mal properties and mechanical properties as the thinner one in Fig. 2.

FIG. 2. (a) The DCSiNB-I without deformation
(Dx¼ 0.0) and deformed DCSiNB-I with
Dx¼ 27.3 and 46.7 Å in the �x direction. (b)
Temperature profile of the DCSiNB-I with
Dx¼ 0 Å and the corresponding straight Si
beam along the x direction. The black dashed
line is the linear fit for the straight Si beam. (c)
Thermal conductance of the deformed DCSiNB-I
with displacement from 0 to 51 Å at 300 K. The
dashed line is for the corresponding straight Si
beam without compression. (d) Phonon density
of states of straight Si beam and the DCSiNB-I
with Dx¼ 0, 27.32, and 46.67 Å.

FIG. 3. (a) The structure of DCSiNB with thick-
ness of 21.7 Å (denoted as DCSiNB-II). The
deformed DCSiNB-II with Dx¼ 0.0, 40.2, and
101.8 Å in the �x direction are shown. The
DCSiNB-II doubles the size of DCSiNB-I in Fig.
2(a). (b) Thermal conductance of the deformed
DCSiNB-II vs displacement at 300 K. The r of
the corresponding straight Si beam (black
dashed line) is shown for comparison.
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In this work, the designed Si metamaterial built with DCSiNBs is
investigated by NEMD simulations. Interestingly, the r of the designed
Si metamaterial is insensitive to large deformation (strain of �41%).
The thermal transport behavior of the designed Si metamaterial is deter-
mined by DCSiNB, which has QZS feature. Further study confirms that
there is an almost unchanged r of DCSiNB under deformation. Under
large deformation, the DOS of DCSiNB is little changed, and the average
value of local stress is ultra-small, which can lead to the deformation
insensitive r. In addition, compared with the corresponding straight Si
beam, the DCSiNB can cause 28.6% reduction of r. The results of this
work are meaningful for the multifunctional applications of elaborately
designed metamaterial with both unchanged thermal conductance and
quasi-zero stiffness feature under deformation, such has both stable
thermal and stable mechanical properties.

See the supplementary material for the details of creation of
the designed Si metamaterial. The details of analyses of the force–
displacement curves for different designed curved Si nanobeam, the
phonon density of states, and the temperature distribution of the
designed curved Si nanobeam are also shown in the supplementary
material. The designed curved Si nanobeam with thicknesses of 3.26

and 4.34 nm and NEMD results using two unit cells of the designed Si
metamaterial are also studied in the supplementary material.
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