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a b s t r a c t

As a critical way to modulate thermal transport in nanostructures, phonon resonance hybridization has
become an issue of great concern in the field of phonon engineering. In this work, we optimized phonon
transport across graphene nanoribbon and obtained minimized thermal conductance by means of
designing nanopillared nanostructures based on resonance hybridization. Specifically, the optimization
of thermal conductance was performed by the combination of atomic Green's function and Bayesian
optimization. Interestingly, it is found that thermal conductance decreases non-monotonically with the
increase of number for nanopillared structure, which is severed as the resonator and blocks phonon
transport. Further mode-analysis and atomic Green's function calculations revealed that the anomalous
tendency originates from decreased phonon transmission in a wide frequency range. Additionally,
nonequilibrium molecular dynamics simulations are performed to verify the results with the consider-
ation of high-order phonon scattering. This finding provides novel insights into the control of phonon
transport in nanostructures.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene nanoribbons (GNRs) have attracted great attention
recently due to their extraordinary properties and potential appli-
cations in various fields [1,2]. One promising application relates to
thermoelectrics [3,4]. Although the thermal conductivity of GNR is
high, its mechanical flexibility and outstanding electric properties,
give it potential to be applied in thermoelectrics [4]. The ability to
reduce the thermal conductivity of GNR without degrading the
electric properties provides a practicable avenue for improving
thermoelectric performance. Besides, it's essential for under-
standing heat transfer physics in low-dimensional systems as well.

Tailoring thermal conductivity of materials in atomic scale
through phonon engineering is a rapidly growing area of research
[3,5e12]. As reported in previous works, GNRs can be synthesized
from molecular precursors with atomic precision which makes it
possible to manipulate their physical properties in atomic scale
[13e15]. Different types of nanostructures have been proposed to
reduce thermal conductivity of GNRs based on the particle nature
of phonon, such as vacancies [16], edge disorders [17], and doping
[18,19]. Besides, the wave nature of phonon can also be utilized to
modulate thermal properties of GNR, which can be realized in
nanophononicmetamaterials (NPM) [3,20]. Based on local resonant
hybridization, phonon transport is blocked, thus thermal conduc-
tivity can be dramatically reduced in PM, which is expected to
remain excellent electric properties in the meanwhile. Previously,
local resonant hybridization in silicon structures has been investi-
gated in detail [3,20e25]. The readers are referred to a review
article on NPMs [26]. By introducing nanopillars on a plate,
numerous local resonances take place. Flat branches appear in the
phonon dispersion, The local resonant hybridization significantly
reduces the group velocities and consequently, the thermal con-
ductivity [22].

However, the research on thermal transport properties of GNR-
based nanostructures based on local resonant hybridization is
relatively less. And, the development of GNR-based nanostructures
with optimal thermal properties requires massive time and effort
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due to their huge parameter space. Thus, it is needed to obtain
knowledge of optimal structures to guide the research by using an
accelerated development process [4].

Recently, by combining material science and data science, ma-
chine learning algorithms have been widely applied in designing
nanostructures and optimizing the target property [27e31]. In the
field of heat conduction, the approach has been extended to the
design of structures in atomic scale with optimized lattice thermal
conductance or thermal conductivity [28,32,33]. These works have
shown that such a method can considerably bridge the gap be-
tween structures and properties. Thus, the complex correlations
among GNR-based nanostructures and their thermal properties
based on phonon local resonant can be recognized utilizing ma-
chine learning algorithms, realizing structural optimization to-
wards thermal transport properties of GNR within less property
calculation.

In this work, thermal transport properties of GNRs are modu-
lated by designing the nanopillars' arrangement. The optimization
of thermal transport properties of GNRs is carried out based on the
combination of Bayesian optimization (BO) and atomic Green's
function (AGF), because ergodic evaluation for thermal properties
of all the candidates is expensive [5,10]. Firstly, the effectiveness of
the optimization method is demonstrated. Then, the optimization
on GNRs with different lengths is performed. Lastly, the underlying
physical mechanism is analyzed by the mode-analysis utilizing
lattice dynamics. the effect of phonon scattering on the results is
taken into account by performing nonequilibrium molecular dy-
namics (NEMD) simulations.
2. Methods

Due to phonon resonance hybridization, the introduction of
nanopillar, which is served as the resonator, can have a high impact
on thermal transport. How to arrange the nanopillars to obtain the
largest/smallest thermal conductance? In this work, the arrange-
ment of nanopillars on the GNR is designed to tune heat conduction
in GNR based on the combination of AGF and BO. As shown in Fig. 1,
the system is comprised of graphene nanoribbon and nanopillars
on two sides, where nanopillars serve as resonators and the values
of W, L1, L2, LP, and HP are fixed to 1.58, 1.62, 0.87, 0.62 nm, and
0.86 nm, respectively. In previous research, it has been observed
that there are many flat bands in the phonon dispersion of GNRs
with nanopillars in this size [19], which means that phonon local
resonance takes place [3,22]. The thickness (d) of nanopillared
GNRs is 0.334 nm with lattice constant (a) 0.1438 nm.

In the optimization part for thermal transport properties of
nanopillared GNR, four elements are of basic requirement: the
descriptor, evaluator, optimization method, and calculator. In this
Fig. 1. Schematic picture of nanopillared
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study, a binary flag is set as descriptors to describe the state of each
nanopillar: “1” and “0” represent there is an occupied nanopillar or
there is no nanopillar on the corresponding site, respectively. The
thermal conductance (TC) is chosen as the evaluator for the
quantitative evaluation of the performance of each candidate.
Open-source Bayesian optimization library COMBO is employed to
perform the optimization process [34], which has been successfully
applied in recent work [4,33]. The details of Bayesian optimization
can be found in the Supplemental Material (SM).

The AGF method [35e37] and NEMD simulations were utilized
to calculate thermal transport properties of GNRs. Based on the
Landauer formula [38], the value of TC (s) at temperature T (300 K
in this work) can be obtained by

s¼ Z2

2pkBT2S

ð
u2XðuÞ eZu=kBT�

eZu=kBT � 1
�2 du (1)

where kB is the Boltzmann constant, u is the phonon frequency,
XðuÞ is the phonon transmission function calculated by AGF
method and S is the cross-sectional area. The details of trans-
mission function calculation can be found in the SM. In order to
take high-order interaction into account, further NEMD simulations
are conducted for validation. The Large-scale Atomic/Molecular
Massively Parallel Simulation (LAMMPS) package is used in the
simulations [8,39e44]. The interatomic interactions are described
by the optimized Tersoff potential, which has successfully repro-
duced the thermal transport properties of graphene [21,45e47].
The detailed parameters and specific simulation processes are
shown in the SM. Time step is set as 0.5 fs. Two Langevin ther-
mostats [48] with a temperature difference of 20 K (310 K and
290 K) are used to establish a temperature gradient along the
longitudinal direction. The thermal conductivities shown here are
averaged over five independent simulations with different initial
conditions.
3. Results and discussions

The optimization is divided into two steps: the first step is to
testify the effectiveness of the proposed method by using a short
enough nanopillared GNR, in which all of the candidates can be
calculated in a short time; and the second is to apply this method to
the optimization of several longer systems. In the first step, the GNR
has 10 sites for nanopillars corresponding to 9.8 nm in length. So,
the number of all the candidates is 210 (1024). This number is small
enough, so that ergodic computation can be implemented to
confirm the optimization results and the efficacy of the method.
Fig. 2(a) and (b) exhibit the obtained optimal structures for
maximum and minimum TC for GNR, respectively.
GNR and corresponding binary flag.



Fig. 2. (a)e(b) Optimal structures with the maximum and minimum thermal conductance for the system with the length of 9.8 nm. (c) The 10 optimization runs with different
initial choices of candidates. (d) Thermal conductance versus the number of nanopillars obtained from calculations of all the candidates.
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The optimal structures exhibited here are the identical results
from 10 independent optimizations with different initial choices.
The purpose of multi-optimization is to test the performance of
Bayesian optimization algorithm. As shown in Figs. 2(c), 10 opti-
mizations converge within calculations of 43 candidates, which is
only 4.2% of all candidates. As for the accuracy of the optimization,
the TCs of all candidates are calculated to verify the optimal
structures, and it is confirmed that the extremum of TC (maximum
and minimum) and the corresponding structures are exactly
consistent with those from BO.

The distributions of TCs of all candidates with different number
of nanopillars is shown in Fig. 2(d). The ratio of maximum to
minimum TC is 2.3, which suggests that the TC is obviously
dependent on the distribution of nanopillared nanostructure. Be-
sides, for the structures with the same number of nanopillars, the
TC values vary with the distribution of nanopillars, which indicates
that phonon local resonant hybridization correlates with the site of
resonators. Interestingly, the GNR with 10 sites fully occupied
(1111111111) doesn't show the minimum thermal conductance,
which is out of expectation. In a shorter system (with 8 sites), it is
found that nanopillars enhance phonon local resonant hybridiza-
tion so that the thermal conductance decreases, and when the 8
sites are fully occupied (11111111), the TC of GNR get minimum
value (as shown in SM II). Since the nanopillars do not always make
a negative effect on the thermal transport with the increase of the
length of GNR. It is moved on to the second step and extends the
Table 1
Optimal thermal conductance and GNR-based nanostructures obtained through
Bayesian optimization for different lengths.

Length [nm] TC [nW/K] Optimal Structures [min/max] d

9.8 1.14/2.61 1111101111/0000000000 3.0%
11.3 1.07/2.62 111101101111/000000000000 6.5%
12.8 1.03/2.63 11011111101111/00000000000000 9.7%
14.3 0.99/2.63 0111111111110111/0000000000000000 12.1%
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optimization to several longer systems, where the number of sites
is 12, 14, and 16, corresponding to 11.3, 12.8, and 14.3 nm in length,
respectively. Table 1 lists the range of TC values in various total
length, all the optimal structures, and the relative difference d be-
tween the minimum TC value and the TC value of the GNR with
fully occupied sites, which is defined as d ¼ ðsfo � sminÞ=smin. As
expected, the range of TCs is enlarged with the increase of the
numbers of total candidates, where there is little variation in the
maximum TC, and a little reduction in the minimum TC. The
structure with the maximum TC has no nanopillars on two sides in
all cases, which is understandable because the nanopillar induces
phonon local resonant, blocking heat conduction. As the length of
GNR increases, the structure with the minimum TC always lacks
one or two nanopillars, compared with the GNRwith fully occupied
sites, and exhibits the aperiodicity and asymmetry. Though the
difference between these two structures is very small, there is al-
ways a nonnegligible gap of thermal transport properties among
them, which also enlarge in the longer GNR without convergent
tendency. To be emphasized, reasonably arranging the distribution
of nanopillars on the GNR can further reduce the TC on the basis of
phonon local resonant.

Now that the structures with theminimum TC are identified, the
mechanisms behind the smaller TC need to be investigated. Firstly,
phonon dispersion relations of the GNR with fully occupied sites
and the GNR with the minimum TC are compared. As a represen-
tative instance, the longest system (16 sites,14.3 nm) is investigated
in detail, where three structures are chosen for comparison: the
GNR with the maximum TC (0000000000000000), the GNR with
the minimum TC (0111111111110111), and the GNR with fully
occupied sites (1111111111111111).

The phonon dispersion relationship and phonon transmission
function are shown in Fig. 3(a) and (b), respectively. Compared to
the GNR (0000000000000000), the other two GNRs
(0111111111110111 and 1111111111111111) exhibit many additional
flat bands in the phonon dispersion, which means phonon local
resonance at corresponding frequencies [3]. More resonant modes



Fig. 3. The total length of the system in this case is fixed as 14.3 nm. (a) The phonon dispersion relationship of the GNRs with the maximum TC, the minimum TC, and fully occupied
sites, respectively. (b) The phonon transmission function of these three structures. (c) The accumulated thermal conductance of the GNRs with the minimum TC and fully occupied
sites.
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will induce more hybridization and impede phonon transport,
which leads to the decrease of group velocities [3,19]. For the GNRs
(0111111111110111) and (1111111111111111), although their TC values
differ by 12.1%, the difference in their phonon dispersion is very
small, which is not obvious in Fig. 3(a). To better show the differ-
ence, the transmission function and accumulated thermal
conductance of these three structures are calculated and shown in
Fig. 3(b), where the resonant modes can be recognized from the
first transmission function minimum (at 1.67 THz). The trans-
mission function of pristine GNR (0000000000000000) is much
higher than those of the latter two structures over awide frequency
range. More importantly, the GNR with the minimum TC exhibits
the lower TC due to the lower transmission function in the fre-
quency of 10e40 THz. This implies that it is by arranging the dis-
tribution of fixed-size nanopillars on the base-structure that
phonon transport could be blocked in a wide frequency range, even
though the single nanopillar with fixed size can only hybridize
some phonon modes at a certain frequency.

Considering effects of nanopillar density on heat conduction in a
graphene nanoribbon, there are competing effects when increasing
of nanopillars. More nanopillars can block more phonon transport
by inducing more resonant hybridization. However, at the same
time, dense nanopillars could enhance phonon coherence, which
takes a larger thermal conductance [49,50]. Thus, the competitive
4

effects bring a minimum value of thermal conductance as the
increasing of nanopillar density. Once removing a few nanopillars
from the graphene nanoribbon with fully occupied sites, there
might be less phonon coherence, hence exhibiting a smaller ther-
mal conductance.

To further expand the above-discussed conclusions to more
realistic systems, NEMD is utilized in consideration of phonon-
phonon scattering. The thermal conductivities of the GNRs with
the minimum TC in different total length L are calculated, and
compared with the thermal conductivities of corresponding GNRs
with fully occupied sites. Besides, the thermal conductivities of
GNRs with no nanopillars that always exhibit the highest TC among
different lengths (9.8, 11.3, 12.8, and 14.3 nm) are also studied to
test size effect. The thermal conductivity values of these structures
are 228.13 ± 11.88, 264.00 ± 14.63, 314.73 ± 16.68,
344.41 ± 10.83 W/m-K, respectively.

Obviously, thermal conduction is a function of length, which is
because the phonon transport is largely affected by the boundary
scattering, when the size of structures is comparable with the
phonon mean free path [10]. As shown in Fig. 4, the GNR with the
minimum TC also exhibits lower thermal conductivity compared
with the GNR with fully occupied sites in different systems.
Furthermore, the difference of thermal conductivities among these
two structures also increases with the length of the whole system.



Fig. 4. Thermal conductivities of the GNRs with fully occupied sites and the minimum
TC among different total length L obtained from NEMD.
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It is indicated that the introduction of phonon scattering does not
impact the inferences based on phonon local resonance above.

4. Conclusions

In summary, we optimize thermal transport properties of
nanopillared GNR based on phonon local resonances, by identifying
the structures with the minimum or maximum TC. It is interesting
that although the nanopillar can introduce phonon local resonant
hybridization wave effect to block thermal transport, the GNR with
fully occupied sites does not exhibit the lowest TC. This phenom-
enon becomes more obvious as the length of the whole system
increases. According to AGF calculation and phonon mode analysis,
it is concluded that arranging the distribution of resonators on the
base-structure could block phonon transport in a wide frequency
range, even though the size of them doesn't change, which means
the resonant modes remain the same. In the end, we perform
NEMD to confirm the results above in consideration of phonon
scattering, which is consistent with AGF calculations.

Here, it shows that the design of minimum or maximum ther-
mal conductance is not by monotonic adjusting the density of
nanopillars. Because there are competing effects when the density
of nanopillars is high. Hence, to achieve the minimized thermal
transport properties, machine learning algorithms could be an
effective way to find an optimized design that generally is aperio-
dicity and asymmetry. It paves a newway for manipulating phonon
transport in nanostructures.
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SM I. Molecular dynamics simulation details 

Method Non-equilibrium MD 

Potential (TERSOFF) 

Function 

𝐸 =
1

2
∑ ∑ 𝑓𝐶

𝑗(≠𝑖)

(𝑟𝑖𝑗)[𝑓𝑅(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐴(𝑟𝑖𝑗)]

𝑖

 

𝑓𝐶(𝑟) = {

1: 𝑟 < 𝑅 − 𝐷
1

2
−
1

2
𝑠𝑖𝑛 (

𝜋

2

𝑟 − 𝐷

𝐷
)

0: 𝑟 > 𝑅 + 𝐷

:𝑅 − 𝐷 < 𝑟 < 𝑅 + 𝐷 

𝑓𝑅(𝑟) = 𝐴𝑒𝑥𝑝(−𝜆1𝑟) 𝑓𝐴(𝑟) = −𝐵𝑒𝑥𝑝(−𝜆2𝑟) 

𝑏𝑖𝑗 = (1 + 𝛽𝑛𝜍𝑖𝑗
𝑛)

−
1
2𝑛 

𝜍𝑖𝑗 = ∑ 𝑓𝐶(𝑟𝑖𝑗)𝑔(𝜃𝑖𝑗𝑘)𝑒𝑥𝑝[𝜆3
𝑚(𝑟𝑖𝑗 − 𝑟𝑖𝑘)

𝑚
]

𝑘≠𝑖,𝑗

 

𝑔(𝜃) = 𝛾𝑖𝑗𝑘 (1 +
𝑐2

𝑑2
−

𝑐2

[𝑑2 + (𝑐𝑜𝑠𝜃 − 𝑐𝑜𝑠𝜃0)2]
) 

Parameters 
m   c d cos 

3.0 1.0 3.8e4 4.3484 -0.930 0.72751 

n   B R  A 

1.57e-7 2.2119 430.0 1.95 0.15 3.4879 1393.6 

Simulation process 

Ensemble Setting Purpose 

NPT 

Runtime (ns) 1 

Relax structure 

Temperature (K) 

Pressure (bars) 

300 

0 

Boundary condition 
longitudinal, transverse, 

periodic, periodic 

NVE 

Runtime (ns) 1.5 

Boundary condition 
longitudinal, transverse, 

fixed, free 
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Thermostat 
Heat source 310 K 

Heat sink 290 K 

NVE 

Runtime (ns) 10 

Record 

information 

Boundary condition 
longitudinal, transverse, 

fixed, free 

Thermostat 
Heat source 310 K 

Heat sink 290 K 

Recorded physical quantity 

Temperature 〈𝐸〉 =∑
1

2
𝑚𝑣𝑖

2 =
1

2
𝑁𝑘𝐵𝑇𝑀𝐷

𝑁

𝑖=1

 

Heat flux 𝐽 =
1

𝑁𝑡
∑

∆𝜀𝑖
2∆𝑡

𝑁𝑡

𝑖=1

 

Thermal conductivity 𝜅 = −
𝐽

𝑊 ∙ 𝑑 ∙ 𝛻𝑇
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SM II. Thermal conductivity calculation 

In the simulation, the nanopillared GNR is divided into N layers along the 

longitudinal direction. The system is coupled with Langevin thermostats at the 3rd to 

6th and (N-5) th to (N-2) th layers with 310 and 290 K, respectively. Atoms at the 

boundaries (the 1st to 2nd and (N−1) th to N th layers) are fixed. The equations of 

motions are integrated by the velocity Verlet method. The temperature gradient is 

obtained by linear fitting to the local temperature, excluding the temperature jumps at 

two ends. As shown in SM I, the thermal conductivity is calculated based on the 

Fourier’s Law, where 𝐽 denotes the heat current transported from the heat bath to the 

heat sink, which is recorded by the average of the energy input and output rates from 

two baths. The energy and temperature profiles at steady state are shown in Fig. S1.  

 

 

Fig. S1. (a) Steady-state temperature profile of GNR with the maximum thermal 

conductance obtained using the NEMD simulations at 300 K for the system length L = 

12.8 nm. The black line is the fitting curve, and its slope is the temperature gradient 

used for calculating thermal conductivity. (b) Energies added to the hot bath and 

removed from the cold bath with respect to the time. 
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SM III. Bayesian optimization 

Bayesian optimization (BO), which acts as a very effective global optimization 

algorithm compared with other machine learning optimization methods, has been 

widely applied in designing problems. It can guarantee to obtain the optimal solution 

under a few numbers of function evaluations due to its sophisticated prediction 

algorithm. In this work, the optimization problem is how to arrange the nanopillars on 

the graphene nanoribbon (GNR) to obtain the maximum and minimum thermal 

conductance (TC). Basic setting has been described in the Methods part. We employ 

open-source Bayesian optimization library COMBO to perform the optimization 

process. As shown in Fig. S2. (a), suppose that TCs of n candidates are initially 

calculated, and we are to choose the next one to calculate. A Bayesian regression 

function is learned from n pairs of descriptors and thermal conductance (i.e., training 

examples). For each of the remaining candidates, a predictive distribution of thermal 

conductance is estimated. The best candidate is chosen based on the criterion of 

expected improvement. Finally, thermal conductance is calculated for the chosen 

candidate, and it is added to the training examples. By repeating this procedure, the 

calculation of thermal conductance is scheduled optimally, and the best candidate can 

be found quickly. The specific mathematic process is elaborated in the Ref. [Mater. 

Discovery 4, 18 (2016)].  

Taking the GNR having 8 sites for different nanopillars corresponding to 8.3 nm in 

length as an example, 10 rounds of optimization are conducted with different initial 

choices of 20 candidates. As shown in Fig. S2. (a), all optimizations come to 

convergence within calculations of 30 structures, which is only 11.7% of the total 

number of candidates (256, 8 sites). To check the accuracy of the optimization, the TCs 

of all candidates are also calculated, and the maximum and minimum TC and the 

corresponding structures are confirmed to be exactly the same as those obtained by 

Bayesian optimization. The distributions of TCs obtained by calculation of all the 

candidates with different number of nanopillars is shown in Fig. S2. (b), which also 

confirms the accuracy of those optimizations. It is also found that nanopillars enhance 
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phonon local resonant hybridization so that the thermal conductance decreases, and 

when the sites are fully occupied on the GNR, the TC get minimum value. 

 

 

Fig. S2. The total length of the system in this case is fixed as 8.3 nm. (a) The 10 

optimization runs with different initial choices of candidates. (b) Thermal conductance 

versus number of nanopillars obtained from calculations of all the candidates. 
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SM IV. Atomic Green’s function 

The atomic Green’s function method was employed to calculate the phonon 

transmission function Ξ(𝜔) 

 Ξ(ω)=Tr[ΓL𝐺
𝑟Γ𝑅𝐺

𝑎] (1) 

where 𝜔 is the phonon frequency, 𝐺𝑟 and 𝐺𝑎 are the retarded and advanced Green 

functions of the scattering region, which can be expressed as 

 𝐺𝑟 = [(𝜔 + 𝑖𝜂)2𝐼 − 𝐾𝐶 − Σ𝐿
𝑟 − Σ𝑅

𝑟 ]−1 (2) 

The level broadening matrices Γ𝐿 and Γ𝑅 describe the rates of inflow from the left 

lead and outflow into the right lead, which can be expressed as  

 Γ𝐿 = 𝑖(Σ𝐿
𝑟 − Σ𝐿

𝑎), Γ𝑅 = 𝑖(Σ𝑅
𝑟 − Σ𝑅

𝑎) (3) 

where KC is the force constant matrix of the scattering region. ΣL and ΣR are the self-

energies, which are calculated from surface Green’s functions of left and right leads, 

respectively. 
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