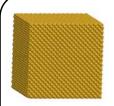


纳米尺度硅声子晶体的热导率研究

丁鸿儒,陈显栋,钱鑫,杨诺 nuo@hust.edu.cn

Nano Heat Group, http://energy.hust.edu.cn/nanoheat/


华中科技大学能源与动力工程学院,武汉,430074

文章编号: 153062

摘 要

本文通过平衡态分子动力学模拟(EMD)研究了纳米尺度立方结构的三维硅声子晶体的热导率。计算得到孔隙率为99%时,室温下的热导率仅为0.0027 W/m·K。与体硅热导率相比降低了5个数量级。首先,我们研究了该结构的有限尺寸效应。发现当模拟晶胞增大至8.5×8.5×8.5 nm³时,体系热导率已经收敛,即得无限大的体块声子晶体热导率。我们还研究了热导率对温度的依赖关系。结果显示当我们将温度从室温变化到更高温度时,体系热导率几乎不变。最后,我们还研究了热导率与孔隙率之间的关系。我们发现热导率依赖于孔隙率;当孔隙率为50%时,热导率为0.5 W/m·K,是体硅热导率的1/300。我们之前的研究显示,当孔隙率增大时,声子的局域化是导致超低热导率的主要原因。由于周期性结构对电学性质影响不大,硅的优良电导率得以保存,意味着该结构超低的热导率可以大幅提高材料的品质因子(ZT)值

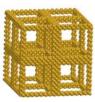


图1 模拟结构示意图 (a)未挖孔前的结构(b) 挖掉的结构 (c) 挖孔后的结构

材料	温度(k)	方法	热导率(W/m·K)	
孔隙率99%	300	MD	0.0027	
孔隙率50%	300	MD	0.49	
同位素掺杂SiNW	300	MD	0.4	
硅纳米管	300	MD	3.0	
硅包裹GeNWs	300	MD	4.7	
锗包裹SiNW	300	MD	2.8	
硅锗超晶胞	300	MD	1.2	
纳米孔硅锗	300	MD	0.36	
三维硅锗声子晶体	300	BTE	0.95	
二维硅声子晶体	300	实验	4.8	
纳米网格	280	实验	1.9	
SiNW链	300	实验	3.5	
体硅	300	MD	160	
体硅	300	实验	156	

表1 体硅和纳米尺度硅材料热导率研究结果的比较

方法与模型

EMD模拟

- Stinliger-Weber(SW) 相互作用势函数
- Velocity Verlet algorithm
- Nosé-Hoover 热源
- 热导率: $\kappa_{\mu\nu}(\tau_m) = \frac{1}{3Vk_BT^2} \int_0^{\tau_m} \langle J_{\mu}(\tau)J_{\nu}(0) \rangle dt$

模拟结果和分析

1.有限尺寸效应

模拟时体系的X,Y,Z方向上均为周期性边界性条件,但理论上会有限尺寸效应,从而不能模拟出体块材料的热导率。为了完全消除有限尺寸效应,本文模拟了在300 K下,晶胞尺寸长度比分别为1:2:3:4(最小尺寸,4.25×4.25×4.25 nm³),孔隙率分别为50%和98%的4个系统的热输运情况,结构及热导率如图2。当处于周期性边界条件下,这四种尺寸的热导率理论上是完全一样的;由图2(e)可以看出,除了最小体系的热导率略小,其余三种晶胞尺寸在误差域内是相等的。因此,可视作热导率在

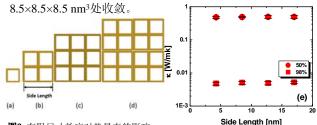


图2 有限尺寸效应对热导率的影响 (a) - (d)不同尺寸的系统 (e) 不同孔隙率,热导率随晶胞边长的变化关系

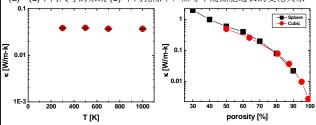


图3 热导率对温度的依赖性 图4 300 k, 热导率对孔隙率的依赖性

2.温度及孔隙率依赖性

我们对温度的依赖性进行研究,选取了孔隙率为87.5%的三维<mark>硅</mark>声子晶体,模拟温度从300 K到1000 K。如图3显示热导率对温度依赖性并不强。最后我们研究了热导率与孔隙率之间的变化关系。如图4,随着孔隙率的提高,热导率的降低十分明显,变化趋势与最近的Yang等人的球形孔硅声子晶体基本一致。本文更具优势的地方是,纳米立方结构可以使得孔隙率最高可达99%(而球形孔只能达到90%)。从而立方结构的声子晶体使得热导率进一步降低至0.0027 W/m·K,与纯<mark>硅</mark>热导率相比降低了5个数量级。

结论

本文采用EMD法模拟了三维立方纳米孔<mark>硅</mark>声子晶体的 热输运过程,并研究了热导率的有限尺寸效应以及对温度 和孔隙率的依赖性。我们发现有限尺寸效应并不明显。同 时温度对热导率的影响并不大,但是孔隙率的作用尤其明 显,热导率随着孔隙率的变化会产生数量级的变化。本文 主要着力于热学性质的研究,但理论上,电导率降低的量 级是远不如热导率的,因而理论ZT值是巨大的。我们可以 初步地认为立方纳米孔隙三维<mark>硅</mark>声子晶体适合用于制备热 电材料。超低的热导率以及优异的稳定性都使得它将成为 未来热门的热电材料。

致 谢

本工作得到以下科研经费的支持: 国家自然科学基金 (51576076) (杨诺)。本工作所做的模拟计算工作得到了国家超级计算机中心(天津) SCTS/CGCL高性能计算中心的大力支持。