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We study thermal properties of one-dimensional �1D� harmonic and anharmonic lattices with a mass gradi-
ent. It is found that a temperature gradient can be built up in the 1D harmonic lattice with a mass gradient due
to the existence of gradons. The heat flow is asymmetric in anharmonic lattices with a mass gradient. More-
over, in a certain temperature region, negative differential thermal resistance is observed. Possible applications
in constructing thermal rectifiers and thermal transistors by using the graded material are discussed.
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Theoretical studies of heat conduction in low-dimensional
anharmonic �nonlinear� lattices in recent years have not only
enriched our understanding of the microscopic physical
mechanism of heat conduction, but also suggested some use-
ful thermal device models such as rectifiers or diodes1 and
thermal transistors2 for controlling heat flow. More impor-
tantly, a two-segment thermal rectifier has been realized ex-
perimentally by using nanotubes,3 which implies that
phonons, like electrons, can be controlled and manipulated.

On the other hand, functional graded materials �FGMs�
have attracted increasing attention in many fields ranging
among aerospace engineering, electronics, optics, and bio-
materials, etc., due to their intriguing properties.4,5 FGMs are
a kind of inhomogeneous materials whose compositions
and/or structures change gradually in space, which results in
corresponding changes in physical properties, such as elec-
tric, mechanical, thermal, and optical properties. FGMs are
abundant in nature, and can be also purposely
manufactured.4,6

However, compared with optical, mechanical, and many
other properties, the thermal properties of graded materials
have not yet been fully studied �see the recent review article2

and the references therein�.
In this paper, we study thermal properties of a FGM rep-

resented by one-dimensional �1D� harmonic and anharmonic
lattices with a mass gradient. For convenience, we call the
lattices mass-graded harmonic or anharmonic lattices. They
can be used to model superlattice or layered structures. It
will be seen that the 1D graded lattices exhibit different
physics, such as asymmetric heat flow and negative differen-
tial thermal resistance, two essential properties used to con-
struct thermal rectifiers and thermal transistors. Therefore,
the graded material might find applications in heat control
and management.

We consider a 1D mass-graded chain, which is equivalent
to a chain with graded coupling constants.7 Figure 1�a�
shows the configuration. The mass of the ith particle is Mi
=Mmax− �i−1��Mmax−Mmin� / �N−1�, where Mmax is the mass
of the particle at the left end and Mmin is that of the particle
at the right end. N is the total number of the particles. The
Hamiltonian of this model is

H = �
i
� pi

2

2Mi
+ V�xi − xi−1��; �1�

here xi is the position of the ith particle. Without loss of
generality, V takes an anharmonic form, namely, �xi−xi−1

−a�2 /2+��xi−xi−1−a�4 /4, which is a Fermi-Pasta-Ulam
�FPU� � potential. So the system is called a graded FPU
lattice. The lattice constant a=1.0 and the coupling constant
�=1.0. In the case of �=0, this lattice reduces to a graded
harmonic chain.

In our simulations we use both fixed and free boundary
conditions. A stochastic heat bath with temperature TL is put
on the first and second particles, and a heat bath with tem-
perature TR is put on the �N−1�th and Nth particles. The
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FIG. 1. �Color online� �a� Schematic picture of the mass-graded
harmonic lattice. �b� Temperature profile for the lattice with fixed
and free boundary conditions �B.C.�. �c� Thermal conductivity �
versus system size N for the lattice with Mmax=10 and Mmin=1.
�=AN, where A=0.048 and 0.027 for free and fixed boundary con-
ditions, respectively. The temperatures of two baths are TL=1.1 and
TR=0.9 for the left and right ends, respectively.

PHYSICAL REVIEW B 76, 020301�R� �2007�

RAPID COMMUNICATIONS

1098-0121/2007/76�2�/020301�4� ©2007 The American Physical Society020301-1

http://dx.doi.org/10.1103/PhysRevB.76.020301


equations of motion �EOMs� of these four particles are de-
scribed by the Langevin equations

Miẍi = F�xi − xi−1� − F�xi+1 − xi� − ��L − �Lẋi, i = 1,2,

�R − �Rẋi, i = N − 1,N ,

�2�

where �L/R are independent Wiener processes with zero
mean, variance 2�L/RkBTL/R, and force F=−�V /�x. To mini-
mize the Kapitza resistance between the bath particle and its
neighbor, we set �L/R /Mi=0.1. Both the fourth-order Runge-
Kutta and the velocity Verlet algorithm are used to integrate
the EOMs. Differences between the results of these two in-
tegration methods are negligible. Simulations are performed
long enough ��107 time units� that the system reaches a
stationary state where the local heat flux is constant along the
chain.

We start with a mass-graded harmonic lattice, i.e., �=0 in
the potential V�x�. Figure 1�b� shows the temperature profile
with different lattice lengths N and different boundary con-
ditions. Mmax and Mmin are fixed at 10 and 1, respectively. It
is well known that no temperature gradient can be built up
along a homogeneous harmonic lattice.8 However, in the
mass-graded harmonic lattice, the temperature gradient is
clearly seen.

The local flux at site i is defined as

Ji =
1

2
a��ẋi+1 + ẋi�F�xi+1 − xi�� . �3�

After the system reaches a stationary state, Ji is independent
of site position i, so the flux can be denoted as J. The thermal
conductivity is calculated as �=−J / �dT /dx�. We should
stress that, in calculating the temperature gradient, we get rid
of temperature jumps at the two boundaries. In Fig. 1�c�, the
thermal conductivity versus N for different boundary condi-
tions is plotted. For the same lattice length N, thermal con-
ductivities with fixed boundaries are lower than those with
free boundaries, because there is a limitation that all vibra-
tional eigenmodes must vanish at the boundaries in fixed
boundary cases. It is clearly seen that the thermal conductiv-
ity diverges linearly with length N. This linear property is
independent of boundary conditions. It is different from that
of a disordered harmonic lattice where the thermal conduc-
tivity diverges with system size as 	N and 1/	N for free and
fixed boundary conditions, respectively.9

The linear divergence of thermal conductivity with system
size is interesting, as we know that, in 1D homogeneous
harmonic lattices, no temperature gradient can be built up
and thus thermal conductivity cannot be defined.10 In order
to understand the underlying mechanism, we have to invoke
the vibrational eigenmodes of the graded system. It is found
in Ref. 7 that there is a critical frequency �c, which is the
maximum eigenfrequency of the corresponding homoge-
neous harmonic lattice with Mi=Mmax, where Mmax is the
maximal mass in the graded harmonic lattice. The modes
with ���c can be well extended over the whole chain,
whereas those with ���c �called gradons� are localized at

the side with lighter masses. Therefore, the formation of a
temperature gradient in the graded harmonic lattice is attrib-
uted to the localization of the gradons.

In the following, we focus on the mass-graded anhar-
monic lattice. We first examine the size effect of thermal
conductivity and its dependence on temperature. It is found
that the thermal conductivity diverges with system size as
�
N	. Figure 2�a� shows the temperature effect of the di-
vergent exponent under free boundary conditions. The value
of 	 does not change too much; it keeps almost the same
value of 0.36 �0.35� when the average temperature T0 is in-
creased from 1.0 to infinity. The value of the divergence
exponent is very close to the results from the renormalization
group for 1D hydrodynamic systems,11 and that for the hard
core model.12 The calculation for infinite T0 is actually real-
ized by discarding the quadratic term �of potential� in the
Hamiltonian, since this term is negligible compared with the
quartic term in the infinite-temperature limit.

Figure 2�b� shows the temperature effect of the divergent
exponent under fixed boundary conditions. In the case of
T0=1, the best fitting with all available data up to N=512
gives rise to 	=0.51. However, the best fitting for values of
the largest five N �512
N
8192� gives rise to 	=0.35,
which is very close to the value at infinite temperature. The
value 	=0.51 might be a finite-size effect.

The value of 	 for free boundary conditions is quite close
to the value for fixed boundary conditions. Therefore, this
result seems to be very similar to that for the homogeneous
FPU � lattice, namely, the divergent exponent 	 seems to be
independent of the boundary conditions.

As for the disordered FPU � lattice, it is observed that the
value of � depends on the boundary conditions.13 However,
this result needs to be further checked, as the authors in Ref.
13 used a very short lattice, N�20.

We should point out that the above results may not be
very conclusive as we have a relatively small system size N.
In order to get a more convincing conclusion, one might
need to go to much larger N, say N�105, which is very
difficult for current computer facilities. However, this is not
the main purpose of the paper.

(a
rb

.u
ni

ts
)

FIG. 2. �Color online� Thermal conductivity � versus system
size N for the mass-graded FPU lattice under free �a� and fixed �b�
boundary conditions �B.C.� with Mmax=10 and Mmin=1. In all
cases, ��N	. The values of 	 are given in the figure.
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In the following, we study thermal rectification in the
mass-graded anharmonic lattice. In order to avoid the effect
of the Kapitza resistance at the boundary, we record the tem-
peratures of the closest particles to the bath particles at the
two ends, namely, the third and the 198th for N=200, as Tl,r.
For convenience, we set the temperature of the heavy-mass
end Tl=T0�1+� and that of the light-mass end Tr=T0�1
−�, where T0 is the average temperature of the system.

For comparison, we show the scaled heat flux JN
��J /C� versus  in Fig. 3�a� for three different mass gradi-
ents, where C is a constant. For different mass gradients,
when �0, the heat flux increases steeply with the increase
of . However, in the case of �0, the heat flux changes a
little when  changes. This asymmetry of heat flux with
respect to  is called thermal rectification. We study the
dependence of the rectification on the mass gradient �fix
Mmin=1 and change Mmax=20,10, and 5�. It is shown in Fig.
3�a� that the larger the mass gradient, the more obvious the
rectification.

To find the temperature dependence of rectification, we
calculate the normalized heat flux JN versus  for different
temperatures, T0=0.01,0.1, and 1.0 �Fig. 3�b�. From this
figure, we can see that the thermal rectification vanishes in
both the high- and low-temperature limits. In the low-
temperature limit, the graded anharmonic lattice reduces to
the graded harmonic lattice in which no rectification exists.
In the high-temperature limit, the low-frequency vibration
modes, which dominate the heat conduction, at both ends can
be excited; therefore no rectification is found either. In the
case of T0=0.1, the low-temperature end is harmonic, while
the high-temperature end is strongly anharmonic; thus the
vibrational spectra are strongly mismatched, which leads to
thermal rectification.

Finally, we should stress that the rectification is sensitive
to boundary conditions. The effect can be observed only for
fixed boundary conditions, because the low-frequency mode
cannot be restrained for free boundary conditions.

We show the temperature dependence of thermal conduc-
tivity in Fig. 4�a� for the graded anharmonic lattice. Another
important feature found in this 1D graded chain is negative
differential thermal resistance �NDTR�,2 namely, the larger
the temperature difference the less the heat flux through the
system. In order to illustrate the NDTR, we fix the tempera-
ture of the right �light-mass� end at Tr=0.4 and plot the heat
flux J versus temperature Tl in Fig. 4�b�. The differential
thermal resistance is defined as R=−��J /�Tl�Tr=const

−1 . The
NDTR is seen on the left part of the vertical line, where J
increases as Tl is increased.

To understand the mechanism of rectification and NDTR,
we calculate the power spectra of the particles close to the
two ends, and then compare their spectra with each other
�Fig. 5�. When the temperature is high enough, the quartic
term in the FPU potential is the dominant term in the whole
chain. So the coupling among modes is strong, and low-
frequency modes, which contribute to the heat conduction
most, are abundant in the spectrum. Then the flux depends
mainly on the temperature difference. So the quartic term is
dominant only at the end with high temperature, and the
quadratic term plays the main role at the low-temperature
end; therefore, the low-frequency modes cannot go through
the system. The heat current is controlled by two competing
effects: temperature gradients and overlaps of vibrational
spectra. In the presence of a mass gradient, there is a big

FIG. 3. �a� Scaled heat flux JN versus  for three different mass
gradients. N=200, T0=0.1, Mmin=1, and Mmax=20, 10, and 5. JN

=J /C, where C=0.0045, 0.0080, and 0.0145 for Mmax=20, 10, and
5, respectively. �b� Scaled heat flux JN versus  for T0=1.0, 0.1,
and 0.01. N=200, Mmin=1, Mmax=10. JN=J /C, where C
=0.072, 0.008, and 0.0005 for T0=1.0, 0.1, and 0.01, respectively.

(a
rb

.u
ni

ts
)

FIG. 4. �Color online� �a� Thermal conductivity � versus tem-
perature T0. =0.1. �b� Heat flux J versus Tl. Tr is fixed at 0.4. N
=200, Mmin=1, and Mmax=20 and 10. The negative differential
thermal resistance �R�0� appears when Tl�0.14 and 0.11 for
Mmax=20 and 10, respectively.
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difference between �0 and �0 in the spectra. As shown
in Fig. 5�a�, where the left end �heavy mass� contacts with
the high-temperature bath ��0�, the spectra of the two
particles overlap in a wide range of frequencies; thus the heat
can easily go through the lattice along the direction of the
temperature gradient. However, when the right end �light
mass� contacts with the high-temperature bath ��0, Fig.
5�b�, the spectra separate from each other. It can be seen that
the light-mass particle with high temperature oscillates

mainly at high frequency; however the heavy-mass particle
at low temperature oscillates at low frequency. As a result, it
is difficult for heat to go through the system, although there
is a temperature gradient. When T0 goes to the low-
temperature limit, the graded chain can be regarded as a
graded harmonic lattice whose thermal properties are like
those of the homogeneous harmonic lattice; then the flux
depends only on the temperature difference.

In summary, we have studied thermal properties of 1D
mass-graded harmonic and anharmonic lattices in this paper.
It is found that a temperature gradient can be built up in the
1D graded harmonic lattice chain due to the localization of
high-frequency gradon modes. The thermal conductivity di-
verges with the system size linearly, ��N. In graded anhar-
monic lattices, the thermal conductivity diverges with system
size as �
N	; the value of 	 seems to be independent of
temperature and boundary conditions.

Thermal rectification and negative differential thermal re-
sistance have been observed in the graded anharmonic lat-
tice. This is quite similar to the recent nanotube experiment,3

in which half of the tube was gradually mass loaded on the
surface with heavy molecules. Our results suggest that
graded materials might be used as thermal rectifiers and ther-
mal transistors.
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