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Unified theory of second sound in two-dimensional materials
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We develop a unified theory for second sound in two-dimensional materials. Previously studied drifting and
driftless second sound are two limiting cases of the theory, corresponding to the drift and diffusive part of the
energy flux, respectively. We find that due to the presence of quadratic flexural phonons, the drifting second
sound does not exist in the thermodynamic limit, while the driftless mode is less affected. This is understood
as a result of infinite effective inertia of flexural phonons, due to their constant density states and divergent
Bose-Einstein distribution in the long wavelength limit. Consequently, the group velocity of the drifting mode is
smaller than that of the driftless mode. However, upon tensile strain, the velocity of the drifting mode becomes
larger. Both of them increase with tensile strain due to the linearization of the flexural phonon dispersion. Our
results clarify several puzzles encountered previously and pave the way for exploring wavelike heat transport
beyond the hydrodynamic regime.
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I. INTRODUCTION

While the diffusive Fourier heat conduction is ubiqui-
tous in bulk solids, the violation in various circumstances,
in particular in low dimensional systems, has been observed
and is becoming a strong focus of current research in con-
densed matter and statistical physics, nanomaterial science,
and engineering [1–6]. One example of such a violation is
the wavelike propagation of temperature field (Fig. 1), termed
second sound, an emergent many-body phenomenon result-
ing from frequent phonon scattering [7–13]. Thermal wave
transport provides new opportunities for heat management, in-
formation processing, and novel device applications [4,5,14–
16]. Exploring its role in anomalous thermal transport may
offer new insight into the divergent thermal conductivity of
a low dimensional system [3–6]. Early research has led to
observation of second sound only in a handful of materials
[17–27]. Recent progress on phonon [28–44] and electron
[45–51] hydrodynamic transport in two-dimensional (2D) ma-
terials has triggered its renewed interest, based on which
coupled electron-phonon hydrodynamics has been anticipated
[52–54]. However, direct experimental observation of phonon
second sound and its connection with anomalous thermal con-
ductivity in 2D materials is still lacking.

Theoretical analysis has identified two types of second
sound, denoted as drifting and driftless modes, respectively
[23]. The drifting mode exists in the hydrodynamic transport
regime, where crystal momentum conservation is approx-
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imately fulfilled during phonon scattering. This requires
the momentum-conserving normal scattering (N scattering)
process to dominate over the nonconserving processes (R
scattering). The latter includes Umklapp scattering, impurity
scattering, and scattering with other quasiparticles. The ex-
istence of the driftless mode requires that the heat-carrying
phonons have similar relaxation time, which should be much
longer than the inverse of external driving frequency. Its ex-
istence does not rely on the hydrodynamic conditions and
is possible even in the diffusive regime. Although these two
types of second sound have been noticed a long time ago
[23,55], their different nature has not been clarified, leav-
ing the experimentally observed second sound in different
materials unclassified [34,56]. Moreover, in the two seminal
works on 2D materials [28,29], to avoid an infrared divergence
introduced by the quadratic flexural phonons, two different
expressions for the second sound velocity have been used,
which needs further clarification.

By combining momentum and energy flux balance equa-
tions, we develop a unified theory to understand the nature of
phonon second sound in 2D materials. We show that the drift-
ing and driftless modes emerge in our theory as two limiting
cases, and they are rooted in the drift and diffusive part of the
total energy flux, corresponding to the first and second terms
on the right-hand side (rhs) of Eq. (6), respectively. More
importantly, in ideal nonstrained 2D materials, the constant
density of states of quadratic flexural phonons and diver-
gent Bose-Einstein distribution in the long wavelength limit
together give rise to logarithmic divergence of the phonon
number density with system size. Consequently, the drifting
second sound does not exist in the thermodynamic limit. This
is a common feature of bosonic quasiparticles with quadratic
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FIG. 1. Schematic diagram of second sound propagation.

dispersion but without number conservation, and reveals the
physical origin of the infrared divergence encountered in pre-
vious works [28,29,36,38,57].

II. THEORY

A. Balance equations

We follow a kinetic approach and employ the Peierls-
Boltzmann equation in the Callaway approximation to de-
scribe the phonon transport [58],

∂ fik

∂t
+ vik · ∇ fik = − fik − fR,ik

τR,ik
− fik − fN,ik

τN,ik
. (1)

Here τR,ik and τN,ik are two mode-resolved, k-dependent re-
laxation times introduced to describe R and N processes,
respectively. fik is the nonequilibrium phonon distribution, vik

is the phonon group velocity, and i is the phonon branch index.
Hereafter we omit ik for brevity when there is no ambiguity.
It is known that with R scattering the system relaxes to the
Bose-Einstein distribution

fR,ik = {exp[β h̄ωik] − 1}−1, (2)

where h̄ is the reduced Planck constant, ωik is the phonon an-
gular frequency, and β = (kBT )−1 is the inverse temperature
with the Boltzmann constant kB and the absolute temperature
T . Meanwhile, in the presence of only N scattering, the sys-
tem relaxes instead to a drifted Bose-Einstein distribution

fN,ik = {exp[β(h̄ωik − h̄k · u)] − 1}−1, (3)

with a characteristic drift velocity u common to all phonon
modes.

The balance equations can then be derived by considering
the (quasi-)conserved quantities in the kinetics. Since phonons
represent thermal excitation of the atomic motion, their num-
ber is not a conserved quantity. Thus, we are left only with
energy and crystal momentum,

∂t E + ∇ · q = 0, (4)

∂t p + ∇ · � = −〈
τ−1

R

〉
p
p, (5)

E and p are the energy and momentum density, and q and �

are the corresponding fluxes. The averaged inverse relaxation
time 〈τ−1

R 〉p [Eq. (A4a)] characterizes the relaxation of p due
to R scattering. The energy conservation results from ignoring
scattering processes that transfer energy to other quasiparti-
cles, i.e., electrons. We also need an equation for the energy

flux q,

〈τc〉q∂t q + q = χW (0)u − κ · ∇T . (6)

The total energy flux includes two contributions. The first
term on the rhs is due to the collective phonon drift mo-
tion, while the second is due to a temperature gradient. Here
〈τc〉q [Eq. (A24)] is a characteristic relaxation time of q, κ

[Eq. (A26)] is the thermal conductivity in the relaxation time
approximation, W (0) [Eq. (A9)] is the enthalpy function eval-
uated by approximating fik ≈ f (0)

ik = fN,ik, and χ [Eq. (A25)]
is an averaged dimensionless parameter characterizing the
relative contribution of N scattering to the total scattering rate.
Details of the derivation and the definition of these variables
can be found in Appendix A.

B. Linear phonons

We start by considering a single phonon branch with linear
dispersion, where the energy flux and the momentum density
are simply proportional to each other, i.e., q = v2

g p. To linear
order in u, we have q = W (0)u. This holds for “relativistic”
quasiparticles with linear dispersion. Using this equivalence,
a Guyer-Krumhansl equation can be derived [21,22,59]. Com-
bining with Eq. (4), we can get a wave solution for the
temperature field, with group velocity v = vg/

√
D, where D

is the system dimension and vg is the phonon group velocity
(see also Appendix C).

We can use this simple case to make a connection with
second sound in helium II (Appendix C). The common drift
velocity u here plays the role of relative velocity between
the normal and superfluid in helium II. Both of them are
sustained even in the absence of external driving, carrying no
entropy, and are essential for propagation of second sound.
However, they are from different microscopic origin. Here,
it requires frequent momentum-conserving N scattering to
sustain the collective drift motion, while in helium it relies
on Bose-Einstein condensation to produce superfluid helium
and its relative motion with the normal fluid.

In the presence of more phonon branches, i.e., longitudinal
and transverse acoustic branches, having different group ve-
locity vg,i, the proportionality between p and q does not hold,
giving rise to the drifting and driftless second sound with their
velocity [55]

vp ≈
√√√√(∑

i

v−D
g,i

)
/

(
D

∑
i

v
−(D+2)
g,i

)
(7)

and

vq ≈
√√√√∑

i

v2−D
g,i /

(
D

∑
i

v−D
g,i

)
, (8)

respectively [60]. The situation changes qualitatively in the
presence of flexural phonons with quadratic dispersion.

C. Flexural phonons

In the ideal, nonstrained 2D system, the flexural phonons
have quadratic dispersion with constant density of states. The
large Grüneisen parameter indicates their dominant role in
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the anharmonic N scattering. This has been attributed to the
physical mechanism leading to phonon hydrodynamics in a
much wider temperature range in 2D materials [28]. However,
the quadratic distribution poses difficulties in the traditional
kinetic theory treatment of phonon hydrodynamics, where a
small-u expansion on fN,ik is performed, i.e.,

fN ≈ fR + β fR( fR + 1)h̄k · u. (9)

Unfortunately this expansion fails for h̄ωik ∼ h̄k · u, which is
always true for a quadratic dispersion in the long wavelength
limit. More severe is the unphysical case when h̄ωk < h̄k · u
and fk < 0. This has been the main obstacle in understanding
2D phonon hydrodynamics and in applying a fully numerical
approach to realistic materials [57].

To focus on this problem, we postpone the full analysis
and consider the flexural phonon branch only. We derive the
hydrodynamic equation using the full form of fN instead. We
furthermore introduce an effective mass m∗ = h̄/2a for the
flexural phonons, such that

h̄ωk = h̄ak2 = h̄2k2/2m∗. (10)

Note that m∗ is introduced for notational convenience and is
not the atomic mass. We can then derive a generalized Euler
equation from Eq. (5) (Appendix A),

(∂t + u · ∇)u + (∇ · u)u + ∇P(0)/ρ
(0)
N = −〈

τ−1
R

〉
pu. (11)

Here P(0) is the effective pressure of the phonon gas
[Eq. (A10b)], and ρ

(0)
N = n(0)

N m∗ is the effective mass density,
with the phonon number density n(0)

N = L−2 ∑
k fN,k. With

these effective parameters, Eq. (11) takes the standard form
for nonrelativistic particles [61].

To consider wave solutions, we ignore terms nonlinear in u.
One important feature of flexural phonons is that ρ

(0)
N diverges

logarithmically with system size L,

ρ
(0)
N (u = 0) ∝ lnL. (12)

This is due to their constant density of states at k = 0 where
fR,k diverges. The divergent ρ

(0)
N results in an equation about

u as ∂t u = −〈τ−1
R 〉pu, with the steady-state solution u = 0.

Thus, we reach one important result: the quadratic flexural
phonons do not support the drifting second sound in the ther-
modynamic limit. Consequently, the problem with negative
occupation fk < 0 does not occur. This is a general feature of
2D bosonic quasiparticles with quadratic dispersion that lack
number conservation. We have provided an intuitive explana-
tion of this result as a consequence of their infinite effective
inertia.

Considering instead the energy flux, we obtain a damped
wave solution for the driftless second sound with velocity

vq ≈
√

κ/
(
C(0)

N 〈τc〉q
)
. (13)

It depends on the heat capacity of flexural phonons C(0)
N ,

instead of the divergent ρ
(0)
N .

The existence of driftless sound mode can be understood as
follows. When a time dependent external temperature gradient
is applied to the system, the energy current response is also
time dependent. The finite response time of the system is
taken into account by the first term in Eq. (6). In the case
〈τc〉q∂t q 	 q, Eqs. (4) and (6) allow damped wave solutions.
This situation is similar to the optical response of free elec-
trons in the Drude model. We get a frequency-dependent
thermal conductivity [21,62–65]

κ (ω) = κ

1 − iω〈τc〉q
. (14)

The real part represents in-phase response of q to the time
dependent temperature field, resulting in dissipation, while
the imaginary part has a π/2 phase lag and gives rise to
wave propagation. It becomes dominant for ω 	 〈τc〉−1

q . This
means that the existence of the driftless second sound does
not rely on the stringent phonon hydrodynamic conditions,
but requires a high frequency excitation. Recent experimental
observation of second sound under high frequency excitation
in Ge seems to fall into this regime [56].

D. Full analysis

We now turn to the full form of the balance equations by
including two linear and one flexural acoustic branches. We
furthermore include the viscous dissipation, which generates
damping of second sound. Correspondingly, the generalized
Euler equation is modified to a Navier-Stokes equation (Ap-
pendix A)

(∂t + u · ∇)u + (∇ · u)u

= −∇P(0)/ρ (0) + η/ρ (0)∇2u + ξ/ρ (0)∇(∇ · u) − 〈
τ−1

R

〉
pu.

(15)

The bulk (η) and shear (ξ ) viscosity coefficients describes the
hydrodynamic dissipation, with ξ = 0 in 2D (Appendix B),
and ρ (0), P(0) include contributions from all phonon branches.
We note that all the zeroth order quantities are evaluated using
fN , instead of the thermal equilibrium fR. This is different
from the standard relativistic and nonrelativistic hydrody-
namics. Consequently, phonons do not fulfill the Lorentz
or Galilean invariance [54]. Only when we consider second
sound propagation and keep only terms linear in u, can they
be recovered (Appendix A 2 e). In that case, considering small
deviations of u, T and q on top of their equilibrium value with
the form

u, δT, δq ∝ exp(−iωt + ik · r), (16)

we obtain a set of linear equations from Eqs. (4), (6),and (15),

⎛
⎜⎝

ω 0 −kα/C(0)

−kαC(0)
P /ρ (0) ω + i

〈
τ−1

R

〉
p + i(η + ξ )k2

α/ρ (0) 0
ikακ −χW (0) 1 − iω〈τc〉q

⎞
⎟⎠

⎛
⎝ δT

uα

δqα

⎞
⎠ = 0, (17)
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FIG. 2. The second sound dispersion relation of graphene calculated using parameters obtained from DFT calculations at T = 100 K
shown in Figs. 5–7. We take L = 50 μm, corresponding to a low cutoff wave vector kcut ∼ 3 × 10−5a−1

0 , where a0 = 2.47 Å is the lattice
constant of graphene. The red dashed and blue solid lines correspond to solutions of the drifting and driftless modes, while the purple lines are
the full solutions [Eq. (17)]. The drifting modes are calculated by taking q = W (0)u, while the driftless modes are obtained by taking u = 0 in
Eq. (17). The upper and lower panel give the real and imaginary parts, respectively. Only positive solutions are shown in the upper panel, while
only the full solutions are shown in the lower. In the lower panel, the absolute value of the thick line gives the lifetime of the second sound in
the upper panel, while the thin line is the diffusive mode with a zero real part. Thus, the actual heat transport composes both the sound and the
diffusive mode simultaneously. In (a) the force constants from DFT calculations are used directly, while in (b) additional rotational symmetry
is applied to the force constants. In (c) the flexural phonons are excluded.

where C(0)
P = ∂P(0)/∂T , α = x, y, z. Dispersion relations of

the associated modes can be obtained from the condition
detA = 0, where A is the 3 × 3 matrix in Eq. (17).

Before presenting the numerical result, we can show that
the drifting and driftless modes show up as two limiting cases
of Eq. (17). In the first limit, when the drifting part dominates,
the energy flux q ≈ q(0) = W (0)u. Equation (17) gives

ωp(k) ≈ ±
√

W (0)
( ∑

i αiC
(0)
i

)
ρ (0)C(0)

k2 − 1

4
δ2(k) − i

2
δ(k), (18)

with δ(k) = 〈τ−1
R 〉p + (η + ξ )k2/ρ (0) (red dashed lines in

Fig. 2). The coefficient αL = 1/2 for linear mode and αN = 1
for quadratic flexural mode. ρ (0) in the denominator indicates
their origin from the momentum balance equation. Since ρ

(0)
N

diverges as lnL in the thermodynamic limit, there is no drifting
second sound solution. In the other limit, when the angular
frequency is much larger than the inverse decay time of the
energy flux ω 	 〈τc〉−1

q , there can still be a wave solution even
when u = 0. We get the driftless sound mode

ωq(k) = ±
√

κ

C(0)〈τc〉q
k2 − 〈τc〉−2

q

4
− i

2
〈τc〉−1

q , (19)

which are mainly associated with the second term on the rhs
of Eq. (6) (blue solid lines in Fig. 2).

We note that, in practice, several factors can lead to a finite
ρ

(0)
N and consequently a slow drifting second sound. First,

the finite size of the sample introduces a low cutoff to the
wave vector kcut ∼ 2π/L, where L is the length of the 2D
sample. Second, it is known that the low frequency flexural
mode in 2D materials is strongly anharmonic, which may
lead to a renormalized dispersion ωk ∝ kγ with 1 < γ < 2
[66] (see however Ref. [67] for an opposite view), removing

the divergence in n(0)
N . Third, tensile strain can harden the

flexural mode and introduce a linear dispersion near k = 0.
Notably, although in practice the divergence can be avoided,
the drifting second sound velocity can be drastically reduced
by the quadratic dispersion of flexural mode (Fig. 2).

III. NUMERICAL RESULTS

We now turn to fully numerical calculations. Figure 2
presents the dispersion relation obtained by solving Eq. (17)
numerically, where only the positive solution is shown (purple
solid lines). We use realistic parameters obtained from density
functional theory (DFT) calculations of graphene (details in
Appendix D). To study the drifting mode, we have chosen a
cut-off wave vector corresponding to a finite size system with
L = 50 μm. Similar results are obtained for single layer boron
nitride (not shown here).

The drifting mode (red dashed line) exists in the long
wavelength limit with the upper cutoff determined by the
condition ωp(k) ≈ δ(k)/2 [Eq. (18)]. On the other hand, the
driftless mode (blue solid) has a lower cutoff determined by
ωq(k) ≈ 〈τc〉−1

q /2 [Eq. (19)]. These two limiting wave vectors
determine the overlap regime of the two types of second
sound. The ideal quadratic dispersion of flexural phonons is
not guaranteed from the numerical force constants. Additional
symmetrization is applied to recover the quadratic dispersion
[68]. Figures 2(a) and 2(b) show the resulting second sound
dispersion before and after the symmetrization. A clear tran-
sition from drifting to driftless mode is observed in Fig. 2(b),
but is difficult to see in Fig. 2(a). This shows that a small devi-
ation from quadratic dispersion can lead to a large change in
the second sound dispersion. Figure 2(c) shows the dispersion
excluding flexural phonons. Comparing Figs. 2(b) and 2(c)
we find that inclusion of flexural phonons drastically reduces
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FIG. 3. Size (L) dependence of drifting (red circle) and driftless (blue triangle) second sound velocities before (a) and after (b) applying
the rotational symmetry.

the velocity of the drifting mode. Notably, in the two seminal
papers on second sound in graphene, Ref. [28] considered the
drifting mode, while Ref. [29] considered the driftless mode.

Figure 3 shows the length dependence of the drifting
(red) and driftless (blue) second sound velocity. Before the
symmetrization, both modes show size-independent group
velocity. The reduction of drifting mode velocity due to in-
creasing ρ

(0)
N ∝ lnL is observed for ideal quadratic phonon

dispersion. This indicates that the logarithmic divergence of
ρ

(0)
N or length dependence of vp is easily destroyed by a small

deviation from an ideal quadratic dispersion in the numerical
calculations. This may explain the reason why convergent
results can be obtained in previous numerical results [28,38].

Since tensile strain can introduce a linear part to the disper-
sion to flexural phonons, we have plotted how it changes the
velocity of drifting and driftless second sound in Fig. 4. Both
of them increase with applied strain. This can be attributed to

FIG. 4. Dependence of drifting (red) and driftless (blue) second
sound velocity v on the applied tensile strain ε = (a − a0)/a0 for
L = 50 μm. The rectangular dots at ε = 0 are the results after ap-
plying rotational symmetry. In the inset, the red solid line shows
the dispersion of flexural mode after symmetrization. The blue lines
show how the dispersion changes with increasing tensile strain from
0% to 3.1% in the arrow direction. Hardening of the flexural mode
with tensile strain is observed, while the transverse and longitudinal
acoustic modes are less affected.

the increasing group velocity of flexural phonons with strain
(inset). It is a special feature of 2D materials with flexural
phonons and is, in principle, observable in experiments.

Finally, we discuss implication of these results on the ther-
mal conductivity of 2D materials. The presence of drift motion
in Eq. (6) generally results in larger thermal conductivity than
that obtained from relaxation time approximation [58]. This
has been used as one signature of hydrodynamic transport
[29,69]. For sufficiently weak damping, the collective drift
motion is sustained and the thermal conductivity may diverge.
Our analysis here suggests that ideal quadratic dispersion
of flexural phonons suppresses the drift motion in the long
wavelength limit. On the other hand, it has been predicted that
thermal conductivity of 2D materials diverges logarithmically
with system size. This has been supported both by numeri-
cal calculations [70–76] and experimental measurement [77].
Numerical simulations further suggest that divergent thermal
conductivity emerges once there is small linear contribution
to the flexural phonon dispersion. This seems inline with our
prediction that drifting second sound emerges in the thermo-
dynamic limit under the same condition. However, it has been
shown [71,76] that thermal conductivity diverges even when
the Boltzmann equation is solved under relaxation time ap-
proximation in which case hydrodynamic transport is absent.
Thus, we argue that hydrodynamic phonon transport is not a
necessary condition for divergent thermal conductivity.

IV. CONCLUSIONS

We have clarified the role of flexural phonons in 2D mate-
rials on the propagation of drifting and driftless second sound
by developing a theory that takes both into account under
equal footing. In addition to providing enlarged N-scattering
phase space, an infinite effective inertial effect of flexural
phonons, logarithmically divergent with system size, destroys
the propagation of drifting second sound in the thermody-
namic limit. On the other hand, the driftless second sound is
less affected. We suggest that propagation of high frequency
driftless second sound is possible even in the diffusive system
and may have been experimentally observed [56]. This greatly
extends the scope of materials where wavelike heat transport
can be explored.
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APPENDIX A: DERIVATION OF THE HYDRODYNAMIC
EQUATIONS

1. Kinetic equation and conservation laws

We consider a generalized Debye model to include the
flexural phonons with quadratic dispersion ωk = ak2, in
additional to the linear mode ωk = vgk. We define an ef-
fective mass m∗ = h̄/(2a), so that the energy of flexural
phonons can be written as h̄ωk = h̄2k2/(2m∗). This form
resembles that of nonrelativistic particles. Correspondingly,
phonons with linear dispersion could be thought as relativistic
quasiparticles.

To describe phonon transport in the system, we start from
the Peierls-Boltzmann equation in the Callaway approxi-
mation [Eq. (1)]. Following the standard approach, we get
the respective balance equations for energy and momentum
density given in Eqs. (4) and (5). The 2D energy (E ) and
momentum (p) density are defined as

E = L−2
∑

ik

h̄ωik fik =
∑

i

Ei, (A1a)

p = L−2
∑

ik

h̄k fik =
∑

i

pi, (A1b)

while q and � are their flux densities

q = L−2
∑

ik

h̄ωikvik fik =
∑

ik

qik, (A2)

� = L−2
∑

ik

h̄kvik fik =
∑

ik

�ik. (A3)

Here L2 is the area of the sample. We have introduced an
averaged relaxation time defined as

〈τ−1
R 〉p =

∑
ik τ−1

R,ik h̄k( fik − fR,ik )∑
ik h̄k( fik − fR,ik )

, (A4a)

〈τ−1
N 〉p =

∑
ik τ−1

N,ik h̄k( fik − fN,ik)∑
ik h̄k( fik − fN,ik)

. (A4b)

We have 〈τ−1
N 〉p = 0 due to crystal-momentum conserva-

tion. These averages are different, which is a manifestation of
the fact that the same scattering process may relax physical
quantities with different efficiency.

2. Zeroth order approximation and Euler equation

We follow the standard approach in deriving the hydrody-
namic equations [36,59,61]. In the zeroth order approxima-
tion, the distribution function is approximated by

f ≈ f (0) = fN . (A5)

This applies when N-scattering process is much stronger than
R scattering. In the following, to derive the zeroth order
physical quantities, we use the full form of fN instead of the
commonly used expansion fN ≈ fR + β fR( fR + 1)h̄k · u. The
small-u limit can be taken afterwards based on the full results.
This is the main difference between present work and most
of the previous studies. We will show that this is convenient
to understand the divergence encountered when dealing with
flexural phonons. In order to get closed expressions, we make
the following approximation for the summation over k:

L−2
∑

k

fk(·) ≈ 1

4π2

∫ 2π

0
dθ

∫ ∞

0
dωD(ω) fk(·). (A6)

That is, we consider isotropic material in the temperature
range T � TD, with TD the Debye temperature. In the follow-
ing we derive results for the number, energy, momentum, and
their corresponding fluxes in the zeroth order, for the linear
and quadratic modes separately. Based on this, a generalized
Euler equation is obtained.

a. Number density

We start from the number density, which is obtained by
summing over all the allowed wave vectors. The mode dis-
persion matters in the summation. Straightforward calculation
then yields

n(0)
L = π

12
(1 − ũ2)−3/2(h̄vgβ )−2, (A7a)

n(0)
N = − 1

4π
ln(1 − λ′)(h̄βa)−1. (A7b)

Here the superscript (0) means zeroth order, ũ = u/vg is
the reduced velocity, and λ′ = exp(βμ′) with μ′ = m∗u2/2 is
the effective chemical potential due to the drift motion.

We find that, in both cases, nonzero u gives rises to correc-
tion of the quasiparticle density, which is even order in u. For
linear mode we get an extra factor (1 − ũ2)−3/2, which resem-
bles that of the relativistic particles, with the velocity of light
replaced by the group velocity of phonon quasiparticle. For
the quadratic mode, the correction comes from the effective
change of the chemical potential μ′ due to the drift motion.

Actually, this form of n(0)
N should be taken with caution. In

the limit of u → 0, n(0)
N diverges logarithmically. The reason

behind this result is simple. The quadratic flexural phonons
have a constant density of states in the long wavelength limit.
A singularity appears at k where the Bose-Einstein distribu-
tion diverges, leading to divergent n(0)

N . One more difficulty is
that, when μ′ > 0, phonons with h̄ωk < μ′ have a unphysical
negative population, meaning that these phonon modes cannot
be properly taken into account within the present kinetic the-
ory. This kind of difficulty does not appear for linear phonon
modes. We will discuss the consequence of divergent n(0)

N .
Meanwhile, we still use this formal result of Eq. (A7b) for
the expressions of other quantities.

The above results of phonon number density shows the
important difference between phonon quasiparticles and real
particles with number conservation. Since phonons simply
represent thermal excitation of the system, their number is not
conserved.
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b. Energy density and flux

Following a similar procedure, the zeroth order energy
density can be obtained:

E (0)
L = 1

2π
Li3(λ)(2 + ũ2)(1 − ũ2)−

5
2 (h̄vg)−2(kBT )3, (A8a)

E (0)
N = E (0)

N,U + E (0)
N,K

= 1

4π
Li2(λ′)(h̄a)−1(kBT )2 + 1

2
ρ

(0)
N u2, (A8b)

with ρ
(0)
N = m∗n(0)

N , ζ (x) is the Riemann zeta function. We
have split EN into two terms E (0)

N,U and E (0)
N,K . Their physical

meaning is clear. The first term E (0)
N,U has the same form as the

energy density in thermal equilibrium, except now λ′ > 1 has
an implicit u dependence. The second term E (0)

N,K is a drift cor-
rection due to the collective motion of all the phonons with the
same velocity u. Although n(0)

N itself diverges logarithmically
when u → 0, E (0)

N,K instead goes to zero due to the presence of
an extra u2.

At this point, it is convenient to introduce

W (0)
L ≡ 3(1 − ũ2)−1P(0)

L , (A9a)

W (0)
N ≡ 2P(0)

N + 1
2ρ

(0)
N u2, (A9b)

with

P(0)
L = 1

2π
Li3(λ)(h̄vg)−2(1 − ũ2)−3/2(kBT )3, (A10a)

P(0)
N = 1

4π
Li2(λ′)(h̄a)−1(kBT )2. (A10b)

W (0) and P(0) can be thought as the enthalpy density and
pressure of the phonon gas, evaluated from the drifted Bose-
Einstein distribution function [Eq. (A5)]. From this we can
write the energy density in a different form

E (0)
L = 2 + ũ2

1 − ũ2
P(0)

L , (A11a)

E (0)
N = P(0)

N + 1
2ρ

(0)
N u2. (A11b)

The phonon energy flux is then written in a compact form

q(0)
i = W (0)

i u, (A12)

which is applicable to both linear and quadratic modes.

c. Momentum density and flux

The momentum density of linear and quadratic modes
takes quite different forms

pL = v−2
g qL, (A13a)

p(0)
N = ρ

(0)
N u. (A13b)

The linear dispersion leads to a general relationship between
pL and qL, Eq. (A13a), which is obtained from their definition
and holds to all (quasi-)particles with linear dispersion. In
the derivation of the Guyer-Krumhansl equation within the
Debye model, this relationship plays a key role in relating the
momentum density with the heat flux [59]. However, there
is no such relationship between pN and qN [36]. Instead,
Eq. (A13b) takes a same form as the traditional nonrelativistic

gas. It shows that the momentum density is simply the drift
momentum m∗u times the number density n(0)

N . Similar to E (0)
N ,

p(0)
N → 0 when u → 0. If we define an effective mass density

for the linear mode

ρ
(0)
L ≡ v−2

g W (0)
L , (A14)

p(0)
L and p(0)

N can be written in the same form. Consequently,
the momentum flux is written in a unified form

�
(0)
i,mn = P(0)

i δmn + ρ
(0)
i umun. (A15)

d. The generalized Euler equation

Substituting the momentum flux Eq. (A15) into its balance
equation, we arrive at

(∂t + u · ∇)u + (∇ · u)u + ∇P(0)/ρ (0) = −〈
τ−1

R

〉
pu. (A16)

Equation (A16) is the generalized Euler equation for phonons,
where the driving force is ∇P(0). Here ρ (0) without subindex
represents the total “mass” density, similarly for other physi-
cal quantities. In the analysis of second sound, we will keep
only the linear-in-u terms in the equations. Similarly, substi-
tuting Eq. (A12) into Eq. (4), we obtain the energy balance
equation for both types of modes

∂E (0)

∂t
+ ∇ · (W (0)u) = 0. (A17)

e. Comparison to standard relativistic and nonrelativistic
hydrodynamics

In the above subsections we have written our results for the
linear and quadratic phonons in similar forms as those of the
standard relativistic and nonrelativistic hydrodynamic equa-
tions [61], respectively. Especially, the energy, momentum
density and their corresponding fluxes [Eqs. (A11a)–(A15)]
take the standard form. However, they do have one important
difference. Here, all quantities with superscript (0) represent
results obtained from the drifted Bose-Einstein distribution
function [Eq. (A5)], instead of the equilibrium one as in stan-
dard hydrodynamics. Thus, strictly speaking, the linear and
quadratic phonons do not fulfill the Lorentz or Galilean in-
variance. This has been discussed in the context of relativistic
hydrodynamics of electrons in graphene [54]. However, when
considering second sound propagation, we will keep only the
linear-in-u terms. In that case, the quantities with superscript
(0) are obtained from the equilibrium Bose-Einstein distribu-
tion, and the Lorentz and Galilean invariance are recovered
for the linear and quadratic phonons, respectively.

3. Transport coefficients and dissipation

The obtained generalized Euler equation does not include
any internal dissipation due to N scattering. They are included
in the higher order corrections. In Appendix B we give de-
tailed derivation based on kinetic theory up to the first order
in the small parameter

εik = τN,ik/τR,ik. (A18)
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Here we follow the general phenomenology, and write the
momentum flux �(1)

mn into the following form:

�(1)
mn = −η

(
∂xn um + ∂xm un − 2

D
δmn∂xi ui

)
− ξδmn∂xi ui,

(A19)

with D the system dimension (D = 2 here), η and ξ the shear
and bulk viscosity, respectively. The corresponding momen-
tum balance equation including dissipation takes the general
form

(∂t + u · ∇)u + (∇ · u)u + ∇P/ρ (0)

= η/ρ (0)∇2u +
[(

1 − 2

D

)
η + ξ

]
/ρ (0)∇(∇ · u)

− 〈
τ−1

R

〉
pu. (A20)

We will derive the viscosity coefficients η and ξ [Eqs. (B8a)
and (B8b)] in Appendix B.

4. Energy flux equation and thermal conductivity

The energy flux balance equation can be obtained by multi-
plying h̄ωikvikτc,ik with Eq. (1) and performing the summation
over ik,

∂t

∑
ik

(1 − χik)τR,ikqik + q

=
∑

ik

χikq(0)
ik −

∑
ik

(1 − χik)∂T fikτR,ik h̄ωikvikvik · ∇T .

(A21)

The combined relaxation time is defined as

τ−1
c,ik = τ−1

N,ik + τ−1
R,ik. (A22)

It shows that the total energy current includes two contri-
butions: one due to the collective phonon drift motion, and
the other due to the temperature gradient. Their relative con-
tributions are weighted by two factors χik = (1 + εik)−1 and
1 − χik, respectively. This equation is valid in the full range of
εik and can be expanded over εik in the hydrodynamic regime
when εik � 1. The zeroth order result gives the null result
q(0) = q(0), while the first order equation is exactly Eq. (B9).
To proceed, we write Eq. (A21) into a compact form

〈τc〉q∂t q + q = χW (0)u − κ · ∇T . (A23)

We have introduced an averaged characteristic relaxation time
of q,

〈τc〉q =
∑

ik
εik

1+εik
τR,ikqik∑

ik qik
≈

∑
ik

εik
1+εik

τR,ikq(0)
ik∑

ik q(0)
ik

, (A24)

the averaged quantities

χ =
∑

ik q(0)
ik (1 + εik)−1∑

ik q(0)
ik

, (A25)

thermal conductivity from relaxation time approximation

κ = L−2
∑

ik

h̄ωikvikvikτc,ik∂T fik

≡ L−2
∑

ik

h̄ωikvikvik〈τc〉κ∂T fik, (A26)

where the second equality defines an average relaxation time
〈τc〉κ . We note that, due to the ik dependence of τc,ik, the two
averages 〈τc〉κ and 〈τc〉q are different.

APPENDIX B: DERIVATION OF THE TRANSPORT
COEFFICIENTS

To consider dissipation in the hydrodynamic equations, we
need to include the first order correction. By performing an
expansion over εik, the first order correction to distribution
function is [59]

f (1) = ε( fR − fN ) − τN (∂t fN + v · ∇ fN )

= ε( fR − fN ) − τN [∂T fN (∂t T + v · ∇T )

− ∂h̄ω fN (h̄k · ∂t u + v · (h̄k · ∇)u)]. (B1)

The corresponding first order corrections to the momentum
and energy flux are

�(1)
mn =

∑
ik

h̄kmvik,n f (1)
ik , (B2)

q(1)
n =

∑
ik

h̄ωikvik,n f (1)
ik . (B3)

In principle we can divide f (1) into even and odd (in k)
contributions. They contribute to �(1) and q(1), respectively.
The full evaluation of �(1) and q(1) using Eq. (B1) is quite
cumbersome. Here, as in traditional hydrodynamics, we only
consider terms that are first order in u and the deviations δu,
δT . The distribution function can then be split into odd ( f (1)

o )
and even ( f (1)

e ) parts

f (1) ≈ f (1)
e + f (1)

o , (B4)

where

f (1)
e =τN,ik[∂h̄ω fRh̄k · (v · ∇)u − ∂T fR∂t T ], (B5)

f (1)
o = εik∂h̄ω fRh̄k · u + τN,ik∂h̄ω fR

× (h̄k · ∂t u − v · ∇T ). (B6)

1. Momentum flux

The momentum flux is obtained from f (1)
e as

�(1)
mn = − 1

2

∑
ik

τN,ikαiW
(0)

ik ∂xi u j

× (δi jδmn + δimδn j + δinδm j ) −
∑

ik

τN,ikαiC
(0)
ik ∂t T δmn

≡ − 1

4
〈τN 〉�

(
W (0)

L + 2W (0)
N

)
∂xi u j

× (δi jδmn + δimδn j + δinδm j )

− 1

2
〈τN 〉�∂T

(
E (0)

L + 2E (0)
N

)
∂t T δmn, (B7)
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Here C(0)
ik , W (0)

ik are the mode resolved heat capacity and
enthalpy function, respectively. We have defined the average
relaxation time 〈τN 〉� through the second equality. Comparing
with the general form of �(1)

mn [Eq. (A19)], we obtain the
expressions for the shear (η) and bulk (ξ ) viscosity

η = 1
4 〈τN 〉�

(
W (0)

L + 2W (0)
N

)
, (B8a)

ξ = 1

2

(
1

D
− 1

2

)
〈τN 〉�

(
W (0)

L + 2W (0)
N

)
. (B8b)

2. Energy flux

The energy flux is obtained similarly from the odd correc-
tion f (1)

o ,

q(1) = −
∑

ik

εikW (0)
ik u −

∑
ik

τN,ikW (0)
ik ∂t u

−
∑

ik

τN,ikαi h̄ωik∂T fR,ikv
2
ik∇T . (B9)

This result can also be obtained by expansion of the full
expression [Eq. (A21)] to the first order in εik. It is understood
that the u → 0 limit of the zeroth order quantities W (0) and
E (0) in Eqs. (B7)–(B9) should be used to be consistent with
the approximation used in Eqs. (B4)–(B6).

APPENDIX C: COMPARISON BETWEEN SECOND SOUND
IN HELIUM II AND IN SOLIDS

Here, for completeness, we present a comparison between
second sound of helium II and phonon system in solids. The
first and second sound in helium II can be understood from
linearized, nondissipative version of Landau’s macroscopic
hydrodynamic equations [78]:

∂ρ

∂t
+ ∇ · j = 0, (C1)

∂ j
∂t

+ ∇P = 0, (C2)

∂ρS

∂t
+ ρS∇ · vn = 0, (C3)

∂vs

∂t
+ ∇μ = 0. (C4)

Here the subscripts n and s represent normal and superfluid,
respectively. Equation (C1) is a result of mass conservation,
with ρ the total mass density and j the mass flux or mo-
mentum density. Equation (C2) represents the conservation of
momentum, with P the pressure. Equation (C3) means that
the total entropy (ρS) is conserved, since we have ignored the
dissipative processes. One important point is that the entropy
is only carried by normal fluid, thus vn. The fourth equa-
tion is special to superfluid. It represents the potential flow
(μ the chemical potential) of superfluid. Landau obtained this
equation from the requirement of ∇ × vs = 0. We now know
that vs ∝ ∇�, where � is the phase of the Bose-Einstein
condensed superfluid wave function.

From Eqs. (C1) and (C2) we can get the equations of
motion for vn and vs, respectively,

ρn
∂vn

∂t
+ ρn

ρ
∇P + ρsS∇T = 0, (C5)

ρs
∂vs

∂t
+ ρs

ρ
∇P − ρsS∇T = 0. (C6)

We can also write them in terms of the relative velocity of the
normal and superfluid w = vn − vs and obtain

ρ
∂S

∂t
+ ρsS∇ · w = 0, (C7)

∂w

∂t
+ ρ

ρn
S∇T = 0. (C8)

We see that the in-phase motion of the normal and superfluid
couples to pressure [Eqs. (C1) and (C2)], while the out-of-
phase/relative motion couples to entropy and temperature
[Eqs. (C7) and (C8)]. As a result, we obtain

∂2ρ

∂t2
− ∇2P = 0, (C9)

∂2S

∂t2
− ρsS2

ρn
∇2T = 0. (C10)

We now show that the former group gives rise to the first
sound, and the latter group gives the second sound. Writing
ρ = ρ(P, T ) and S = S(P, T ) in terms of P and T , and per-
forming a linear analysis, we get(

∂ρ

∂T

)
P

δT +
(

1

v2
1

− 1

v2

)
δP = 0, (C11)

v2
2C

T

(
1

v2
2

− 1

v2

)
δT +

(
∂S

∂P

)
T

δP = 0, (C12)

with

v1 =
√

∂P

∂ρ
, v2 =

√
T S2ρs

Cρn
. (C13)

The condition that the above two equations have solutions
gives (

1 − v2
1

v2

)(
1 − v2

2

v2

)
= 0. (C14)

Here we have ignored the difference between heat capacity
at constant volume and that at constant pressure. We get two
sound solutions, whose velocities are given by v1 and v2.
We recognize v1 as velocity of the normal first sound. v2

is then that of the second sound. Laudau showed that if we
consider only phonon contribution (ignoring roton), we have
v2 = v1/

√
3.

The most important point to present this analysis is to
show that the existence of second sound in helium II relies on
the relative out-of-phase motion of the normal and superfluid
(w). Thus, second sound in helium II is a result of quantum
mechanical effect, since its appearance relies on the presence
of Bose-Einstein condensation.

The similarity between second sound in helium II and
in solids can be explained by considering the simple Debye
model with one linear phonon branch ω = vgk. We assume
that the phonon system follows the drifted distribution fN,ik
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FIG. 5. (a) Phonon dispersion of graphene along high symmetry directions. (b) Zoom in of the dispersion near � in (a). The blue and
red lines correspond to results before and after the symmetrization of the force constants, which guarantees the translational and rotational
symmetry are fulfilled. The ideal quadratic dispersion of ZA mode is recovered after the symmetrization.

due to the dominant normal scattering process. In the linear-
in-u limit, if we ignore all the dissipative processes, the energy
flux q and the momentum density p are proportional to u, with
q = v2

g p = W (0)u. The energy balance equation then becomes

∂E (0)

∂t
+ W (0)∇ · u = 0. (C15)

We also have the momentum balance equation

∂t p + ∇P(0) = 0 → W (0)v−2
g ∂t u + ∇P(0) = 0. (C16)

As discussed in Appendix A 2 e, although W (0), E (0), P(0)

are calculated from the drifted distribution, their difference
with the equilibrium value is at least second order in u. Thus,
here to the lowest order, they can be taken as the equilibrium
value. For D-dimensional phonon gas with linear dispersion,
we have the following relations:

E (0) = DP(0), (C17)

W (0) = E (0) + P(0) = (D + 1)P(0), (C18)

S(0) = (D + 1)P(0)/T . (C19)

Thus, we can write Eq. (C15) in another form

∂S(0)

∂t
+ (1 + D−1)S(0)∇ · u = 0. (C20)

This equation can be compared with Eq. (C7). We see that the
common drift velocity u plays the role of relative velocity w

between the normal and superfluid in helium II. But the origin
of u is the momentum conserving normal phonon scattering,
which does not need to be quantum mechanical. Combining
with Eqs. (C16), we get an equation for the entropy

∂2S(0)

∂t2
− v2

g

D
∇2S(0) = 0, (C21)

which gives rises to the drifting second sound with velocity
vp = vg/

√
D.

APPENDIX D: DETAILS OF THE DFT CALCULATION

Phonon dispersion relation of graphene is calculated using
Vienna ab initio simulation package (VASP) [79,80] com-
bined with phonopy (Fig. 5) [81]. We use a supercell size
5 × 5 × 1 to calculate the second order force constants. The
numerical flexural phonon dispersion does not follow the
ideal quadratic relation near � (blue dashed-dotted line).
Additional symmetrization is used to recover the quadratic
dispersion (red solid line) [68]. This slight change of disper-
sion has important influence on the second sound dispersion
(Fig. 2).

To obtain the relaxation times, we calculate the third order
force constant using phono3py [82] with the same super-
cell size. The numbers of mesh points for reciprocal space

FIG. 6. The scattering rate of acoustic phonon modes for graphene at 100 K before (a) and after (b) the symmetrization. The ZA mode
shows the smallest scattering due to mirror symmetry of graphene about the 2D plane.
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FIG. 7. Dependence of the effective mass density ρ (0) on the sample size for linear (a) and flexural (b) phonon modes of graphene at
100 K. Results before and after symmetrization of the forces constants are shown in blue (square) and purple (star symbols), respectively. The
logarithmic dependence of ρ

(0)
N on L is recovered after the symmetrization. Note that ρ

(0)
L is two orders of magnitude smaller than ρ

(0)
N . The

inset in (b) shows fitting of ρ
(0)
N to lnL. Extrapolation of ρ

(0)
N to L = 50 μm is used in the numerical calculation of Fig. 2. m∗ = h̄/(2a) is the

effective mass defined in the main text.

sampling are 501 × 501 × 1. The scattering rates before and
after the symmetrization of graphene are shown in Fig. 6.
The viscosity, thermal conductivity under relaxation time ap-
proximation and the effective mass density are obtained using

these numerical results and used to calculate the second sound
dispersion. As an example, we show in Fig. 7 the dependence
of ρ

(0)
L (a) and ρ

(0)
N (b) on the sample size before and after the

symmetrization.
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