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Solar stills are considered an effective method to solve the scarcity of drinkable water. However, it is still missing
a way to forecast its production. Herein, it is proposed that a convenient forecasting model which just needs to input the
conventional weather forecasting data. The model is established by using machine learning methods of random forest and
optimized by Bayesian algorithm. The required data to train the model is obtained from daily measurements lasting 9
months. To validate the accuracy model, the determination coefficients of two types of solar stills are calculated as 0.935
and 0.929, respectively, which are much higher than the value of both multiple linear regression (0.767) and the traditional
models (0.829 and 0.847). Moreover, by applying the model, it is predicted that the freshwater production of four cities
in China. The predicted production is approved to be reliable by a high value of correlation (0.868) between the predicted
production and the solar insolation. With the help of the forecasting model, it would greatly promote the global application
of solar stills.
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1. Introduction18

Seawater covers 70% of the earth, freshwater is mainly19

distributed in glaciers, ice caps, and underground.[1,2] With the20

increase in population and industrial activities, the shortage of21

drinkable water is a catastrophic issue the world facing.[3,4] As22

seawater accounts for 97% of water on the earth, desalination23

is an effective solution for the shortage of freshwater.[5]
24

Among the many desalination technologies, solar25

desalination[6] is one of the most environmentally friendly26

technologies. Fortunately, areas where freshwater is scarce27

happen to possess abundant solar energy.[7] Solar still is one28

of the solar desalination technologies, which is easy to install29

and maintain.[8] Solar still has broad application prospects in30

remote coastal areas and islands. Given this, solar desalina-31

tion has received widespread attention in recent years.[9–18]
32

However, the value of daily production fluctuates greatly and33

is much affected by climatic conditions, which are not easily34

forecasted.35

Traditional models[19–21] show the function between pro-36

duction and a couple of important factors. Due to the complex-37

ity of heat and mass transfer, in reality, these models with sim-38

ple functions are difficult to describe the heat and mass transfer39

process inside the solar still accurately, which limited to guide40

the design of solar stills.[22] Recently, it is an emerging and41

effective way to predict the performance of solar still by using42

the machining learning method.[23] Such as the multiple linear43

regression (MLR) method,[24] artificial neural network (ANN)44

method,[25,26] random forest (RF) method.[27,28] Among cur-45

rent algorithms, RF is an ensemble learning algorithm based46

on decision trees, with unexcelled accuracy,[29,30] and shows47

excellent performance in predicting.[28]
48

However, the previous studies just gave the functional re-49

lationship between the performance and a couple of profes-50

sional parameters, such as basin plate temperature, glass cover51

temperature, feedwater temperature, etc., which is not conve-52

nient to measure for customers. More importantly, the previ-53

ous models cannot forecast production in advance, which is a54

big challenge.55
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The production is greatly affected by the weather. And, it56

is easy to obtain weather forecast data, such as air temperature,57

humidity, wind, atmospheric pressure, and air quality index. It58

will be a convenient and effective way to forecast the produc-59

tion if a model could be established between the production60

and the weather forecasting data.61

Production forecasting is significant to promote the global62

application of solar still. Even in remote areas, it is not diffi-63

cult to get conventional weather forecasting. Besides, fore-64

casting can help to make a stable supply of water or a control-65

lable desalination capacity. That is, with the help of forecast-66

ing, a proper substitute desalination strategy can be planned67

and chosen, such as using electrically powered desalination as68

compensation.69

This work aims to make a model forecast the daily pro-70

duction of solar still based on convenient weather data. The71

required data to train the model was obtained by carrying out72

experimental measurements from July 2020 to March 2021.73

Based on the production and weather data, the forecasting74

model was conducted using the random forest method. To ver-75

ify the practicability and accuracy of the model, the determina-76

tion coefficients were calculated and compared. By applying77

the model, the freshwater production of four cities in China78

was forecasted from conventional weather data.79

2. Experimental systems80

The solar stills consist of a glass cover, basin, foam heat-81

insulation layer, water feeding tank, freshwater outlet, and re-82

quired measuring instrument, as shown in Fig. 1(a). The bot-83

tom dimension is 50 cm× 50 cm. Singh and Tiwari[31] re-84

ported that the annual solar still yield reached a maximum85

value when the condensing glass cover inclination was equal86

to the latitude of the place. Thus the glass cover of the solar87

stills has an inclination angle of 30◦, which is the preferred88

solar incidence angle at Hangzhou (120.2◦ E, 30.3◦ N). The89

equipment is installed on the roof of a building in Hangzhou,90

China. The solar still is placed horizontally and the front is91

south-facing.92

The schematic diagram of solar still is shown in Fig. 1(b).93

The solar still has an interfacial evaporation structure at the94

bottom and insulation foams at the sidewall (BIF-SS). The95

BIF-SS adopts a three-layer composite structure: floating light96

absorption layer, water-conducting layer, and heat-insulating97

layer. The light-absorbing layer structure is made of black98

deerskin velvet fiber cloth, with 95% solar absorption. The99

water-conducting layer is made of cotton fiber cloth with a100

thickness of about 8 mm, and is in contact with seawater101

through the water-conducting channel. The sides and bot-102

tom are all wrapped with heat-insulating extruded foam XPS103

board, 2-cm thick. The thermal conductivity of the XPS board104

is 0.03 W/m·K. The freshwater is obtained from the freshwater105

collection tank, and recorded by cylinder manually. The solar106

still with interfacial evaporation structure is designed based on107

our previous work,[32] which has both high energy efficiency108

and salt rejection capacity. Meanwhile, a control group was set109

up on the solar still with an interfacial evaporation structure at110

both the bottom and the sidewall (BSI-SS). The schematic of111

BSI-SS is shown in Fig. 1(c).112
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Fig. 1. (a) The photo of the solar still system for measurement in
Hangzhou. (b) The internal structure of the solar still system. The di-
agrams of two solar still with an interfacial evaporation structure: (c) at
the bottom and the insulation foams at the sidewall (BFI), and (d) on both
the bottom and sidewall (BSI).
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Fig. 2. The recorded weather data of Hangzhou was used as input in the
model predicting the production of solar still. (a) Air temperature, (b)
relative humidity, (c) air quality index, (d) atmospheric pressure.
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Table 1. The test platform of meteorological data.117

Name Device model Range Accuracy Resolution

Wind speed sensor 011E-MetOne 0–60 m/s ±0.1 m/s 0.04 m/s
Wind direction sensor 020C-MetOne 0–360◦ ±3◦ < 0.1◦

Environmental humidity sensor HC2S3-Campbell 0–100% RH ±0.8% RH 0.1% RH
Atmospheric pressure sensor CS106-Campbell 500–1100 kPa ±0.3 kPa ±0.1 kPa
Ambient temperature sensor 110PV-Campbell −40–135 ◦C ±0.2 ◦C –

Data logger CR100-Campbell 0–4200 g 0.01 g –
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Fig. 3. (a) Both the accumulated production (red dots) and the hourly
production (black squares) of the BIF solar still on March 9th, 2021. (b)
The daily production of BIF-SS was measured from July 2020 to March
2021, which is a part of the dataset for building the forecasting model.

120

The measurements need a series of sensors which are121

shown in Table 1. The weather parameters were recorded ev-122

ery minute, including wind speed (WS), wind direction (WD),123

atmospheric pressure (Press.), air temperature (T ), and relative124

humidity (RH). The air quality index (AQI) data is obtained125

from the website of www.tianqi.com. The recorded weather126

data of Hangzhou is shown in Fig. 2 which is expressed as127

daily average values. Affected by the El Niño, the average128

temperature in August is highest, which is significantly higher129

than that in July. Meanwhile, August is the driest month with130

the lowest average air humidity. It also can be seen from Fig. 2131

that the AQI and atmospheric pressure are higher in the winter.132

Figure 3(a) shows the hourly production of the BIF-SS133

on March 9th, the freshwater productivity gradually increases134

from 8:00 and reaches the highest at 12:00 about 0.8 kg/m2·h.135

By 20:00, the productivity is close to 0. Figure 3(b) shows136

the recorded water production of the solar still from July 2020137

to March 2021. Affected by the weather, the daily production138

varies. The freshwater production in August was the highest139

and significantly higher than in the other months. The highest140

daily production is 6.0 kg/m2·day. The data of weather and141

production are listed in supporting materials (SM) I.142

3. Machine learning methods143

The forecasting model is established based on the dataset.144

The solar still dataset is given as F = {X ,y}1:i, where X is the145

input parameter, including Week, WS, WD, T , Press, RH, and146

AQI, and y is daily production, the target value corresponding147

to X .148

Ws WD T

149

Fig. 4. The flowchart of the forecasting model includes data preprocess-
ing, model construction, and algorithm optimization.150

The basic steps include data preprocessing, model con-151

struction, and algorithm optimization. The process of data152

preprocessing refers to scaling the data attributes to a specific153

range. Because the data attributes with larger magnitudes will154

dominate, the accuracy of the model will be affected. The155

standardized method (Z-Scale) is used to scale the input data156

parameter. The Z-Scale method is based on the mean and stan-157

dard deviation of the original data, the sample spacing can be158

maintained. After data standardization, the RF method is used159

to establish the forecasting model. First, select samples ran-160

domly, divided into training and test set. Then, build a decision161
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tree for each piece of data, and get the predicting result. Last,162

vote on all the results and get the final result. The Bayesian op-163

timization algorithm (BOA)[28] is used for searching the most164

appropriate hyper-parameters of the RF model. The Diagram165

of the forecasting model establishment is shown in Fig. 4 (De-166

tails in SM II).167

4. Results and discussion168

4.1. Forecasting results of RF model169

Figure 5 shows the performance of the forecasting model170

for three different cases of testing datasets. The determina-171

tion coefficient (R2) and mean square error (MSE) are used to172

evaluate the performance of the forecasting model (details in173

SM II). With the increasing/decreasing of the size of the train-174

ing/testing dataset, R2 of the random forest models remains at175

a high level and improves gradually which indicates the model176

processes a good convergence. The value of R2 and MSE are177

0.935 and 0.209, respectively, when the test size is 10%.178

The value of R2 is much higher than that of multiple179

linear regression (0.767) and traditional models. For exam-180

ple, Kumar[20] developed a thermal model to predict the ex-181

act performance of solar stills for a different range of Grashof182

Numbers, the value of R2 of Kumar’s model was only 0.829.183

In Panchal’s work,[21] the main parameters of the theoretical184

model were water temperature and inner glass cover tempera-185

ture, and the R2 of the model was 0.847. The results in Fig. 5186

indicate that the RF method possesses a much higher predict-187

ing accuracy than traditional models (details of calculation in188

SM III).189
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Fig. 5. For BIF-SS, the predicted values of production versus the measured values of production correspond to different sizes of the testing
dataset, which are (a) 10%, (b) 20%, and (c) 30% of the dataset, respectively. The value of R2 is much higher than that of multiple linear
regression (0.767).

191

4.2. Correlation between productions and weather param-192

eters193

It was evaluated that the degree of correlation between the194

production of solar stills and the conventional weather fore-195

casting parameters. The random forest method was preferred196

due to its superior forecasting performance. And the results197

are shown in Fig. 6. The three highest parameters are the daily198

highest temperature (Tmax), relative humidity (RH), and the199

daily lowest temperature (Tmin) whose values are 41%, 20%,200

and 18%, respectively. Moreover, Press., WS, and WD have201

similar importance values in the range of 2.3% to 3.6%, which202

is close to that of random orders (2.1%). The random orders203

were generated randomly, so it was a factor not correlated with204

the production and used as a normal value for comparison.205

It indicates that Tmax, RH, and Tmin are the three highest206

correlated factors correlating with the production. Tmax has207

the highest correlation values. When the temperature rises due208

to increasing solar radiation, the evaporation rate will be in-209

creased. The relative humidity has a higher degree of corre-210

lation because the relative humidity directly reflects weather211

conditions and solar radiation. When the air humidity is high,212

it is usually cloudy or rainy and has low radiation intensity.213

Besides the three highest correlated factors, the air quality in-214

dex has an importance value of 6%. AQI can also affect so-215

lar radiation energy. When the AQI is high, it means the air216

quality is poor and the particulate matters scatter the sunlight,217

which reduces the solar energy entering solar stills.218
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Fig. 6. The degree of correlation between the production of solar stills
and the conventional weather forecasting parameters. The three param-
eters with the highest values are the daily highest temperature (Tmax),
relative humidity (RH), and the daily lowest temperature (Tmin), whose
values are 41%, 20%, and 18%, respectively.
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4.3. Forecasting results between different types of solar221

still222

A control group was set up to verify the accuracy and223

applicability of the predicting RF method. The solar evapora-224

tion experiments were done on the solar still with an interfa-225

cial evaporation structure at both the bottom and the sidewall226

(BSI-SS).227

Figure 7 shows the results of the predicting performance228

based on the production data of BSI-SS. The predicting re-229

sults are comparable to the BIF-SS. As shown in Fig. 8, 20%230

of production data is used as the test set. The forecasting mod-231

els based on the two types of solar stills show high predicting232

accuracy, the R2 of the BIF and BSI are 0.927 and 0.939. The233

results verify the high accuracy and applicability of the fore-234

casting model.235
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Fig. 7. For BSI-SS, the predicted values of production versus the measured values of production correspond to different sizes of the testing
dataset, which are (a) 10%, (b) 20%, and (c) 30% of the dataset, respectively.237
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Fig. 8. Comparison of the values between the measured production data and the predicted production data, using 20% of production data as the
test set. The x axis is the serial number of test data which is picked up randomly. (a) BIF-SS and (b) BSI-SS.239

5. Appling forecasting model240

By applying the forecasting model, freshwater produc-241

tion in four Chinese cities (Wuhan, Hefei, Chongqing, and242

Linzhi) was calculated and predicted from the weather data.243

It is obtained from the China meteorological data center244

(http://data.cma.cn) that the weather data from July 2020 to245

February 2021 includes air temperature, atmospheric pressure,246

wind speed and direction, relative humidity, and air quality in-247

dex. The four cities are picked up because they have simi-248

lar latitudes to Hangzhou (∼ 30 N). Then, the daily produc-249

tions from July 2020 to February 2021 were calculated and250

predicted based on the daily weather data.251

The average daily production of the four cities is shown in252

Fig. 9. The average daily productions in Hefei and Wuhan are253

similar to that of Hangzhou, 2.18 kg/m2 per day. Because the254

three cities have similar latitudes and are located close to the255

Yangtze River, that is, the climates of these three cities are sim-256

ilar. The production of Chongqing is the lowest among these257

cities, 2.1 kg/m2 per day because Chongqing is foggy all year258

round and its intensity of solar radiation is lower than other259

cities. The production of Linzhi is the highest, 2.48 kg/m2 per260

day. This is because Linzhi is located at the Qinghai–Tibet261

Plateau and has a high altitude (3.1 km) and insolation. The262

predicted daily production of the three cities was shown in SM263

IV.264

Furthermore, the daily solar insolation data is obtained265

from the China meteorological data center to analyze the pre-266

diction accuracy. It needs a gauge to check the predicted267

values because there are no measured values of production.268

As shown above, solar insolation is not used in building the269

model. That is, the values of solar insolation are independent270

of the predicted production. Generally, the solar insolation is271

048801-5



Chin. Phys. B 32, 048801 (2023)

in direct proportion to the production, which can be used as a272

gauge to check the predicted values. Figure 10 shows the com-273

parison of the predicted daily production and the solar insola-274

tion from July 2020 to February 2021 in Wuhan. Because of275

the higher/lower radiation intensity and temperature, the pro-276

duction should be higher in the summer/winter. The changing277

trend of the predicted production is similar to the daily solar278

insolation. And the correlation coefficient of the two data sets279

is 0.868, which indicates that the forecasting model possesses280

high accuracy.281

Hangzhou Hefei Wuhan Chongqing Linzhi

1.6

1.8

2.0

2.2

2.4

2.6

A
v
e
ra

g
e
 d

a
il
y
 p

ro
d
u
c
ti

o
n
 (

k
g
/
m

2
)

City282

Fig. 9. The predicted average daily production of five cities in China by
using the RF model. The production of Linzhi is the highest due to its
high elevation and insolation. Chongqing is the lowest due to its dense
mist and lowers radiation.
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Fig. 10. A comparison of the predicted daily production and the solar
insolation from July 2020 to February 2021 in Wuhan. The correlation
coefficient of the predicted daily production and the solar insolation is
0.868, which indicates that the forecasting model possesses high accu-
racy.

285

6. Conclusion286

In conclusion, it is proposed a method to forecast the pro-287

duction of solar still based on convenient weather data. The288

forecasting model is built by using marching learning and a289

measured dataset. To collect the dataset of production and290

weather data, a series of solar evaporation measurements on291

two types of solar stills (BIF-SS and BSI-SS) were performed292

from July 2020 to March 2021. The forecasting model was293

trained and established by using the random forest method,294

and then, optimized by the Bayesian algorithm.295

Both the two forecasting models corresponding to the296

two solar stills have high accuracy whose determination co-297

efficients (R2) are much higher than the traditional model.298

The highest values of R2 for BIF-SS (BSI-SS) on the train-299

ing dataset and test dataset can reach 0.946 (0.951) and 0.935300

(0.939), respectively.301

To look for closely related weather parameters on the per-302

formance of the solar still, it was also calculated that the de-303

gree of correlation between the production and weather param-304

eters. The three highest correlated parameters are maximum305

air temperature, Relative humidity, and minimum air temper-306

ature, whose degrees of correlation are 41%, 20%, and 18%,307

respectively.308

By applying the model, the productions of BIF-SS and309

BSI-SS in four cities were predicted from their weather data310

from July 2020 to February 2021. To verify the reliability of311

the predicting results, the predicting results were compared312

with the daily solar insolation data. The correlation coefficient313

between predicted production and solar insolation is 0.864, in-314

dicating that the predictions have high accuracy.315

There is universal applicability for our proposed idea to316

establish the predicting model. That is, the predicting method317

can be extended to any other type of stills. When forecasting318

the production of another type still, it just needs to follow our319

research processes and steps to establish another correspond-320

ing model. With the help of the forecasting model, it would321

greatly promote the global application of solar stills.322
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